Files
endurain/backend/app/fit/utils.py
João Vitória Silva 31a851250d Add activity name support to file parsing functions
Introduces an optional activity_name parameter to GPX, TCX, and FIT file parsing utilities, allowing the activity name to be set from external sources (such as Garmin Connect). Updates related function signatures and usages throughout the codebase to propagate this parameter. Also adds windsurf to ActivityDistances schema and improves type annotations and error handling in activity utilities.
2025-11-16 22:48:37 +00:00

1112 lines
43 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import fitdecode
from fastapi import HTTPException, status
from datetime import datetime, timedelta
import time as timelib
from sqlalchemy.orm import Session
from timezonefinder import TimezoneFinder
from zoneinfo import ZoneInfo, available_timezones
import activities.activity.utils as activities_utils
import activities.activity.schema as activities_schema
import activities.activity_exercise_titles.schema as activity_exercise_titles_schema
import activities.activity_exercise_titles.crud as activity_exercise_titles_crud
import activities.activity_workout_steps.schema as activity_workout_steps_schema
import users.user_default_gear.utils as user_default_gear_utils
import garmin.utils as garmin_utils
import gears.gear.crud as gears_crud
import users.user_privacy_settings.schema as users_privacy_settings_schema
import core.logger as core_logger
import core.config as core_config
def create_activity_objects(
sessions_records: dict,
user_id: int,
user_privacy_settings: users_privacy_settings_schema.UsersPrivacySettings,
garmin_activity_id: int | None = None,
garminconnect_gear: dict | None = None,
db: Session = None,
) -> list:
try:
# Create an instance of TimezoneFinder
tf = TimezoneFinder()
timezone = core_config.TZ
# Define variables
gear_id = None
if garminconnect_gear:
user_integrations = garmin_utils.fetch_user_integrations_and_validate_token(
user_id, db
)
if user_integrations.garminconnect_sync_gear:
# set the gear id for the activity
gear = gears_crud.get_gear_by_garminconnect_id_from_user_id(
garminconnect_gear[0]["uuid"], user_id, db
)
# set the gear id for the activity
if gear is not None:
gear_id = gear.id
activities = []
for session_record in sessions_records:
# Define default values
activity_type = 10
activity_name = "Workout"
pace = 0
if session_record["session"]["activity_type"]:
# Set the activity type based on the session record
activity_type = activities_utils.define_activity_type(
session_record["session"]["activity_type"]
)
if gear_id is None:
gear_id = (
user_default_gear_utils.get_user_default_gear_by_activity_type(
user_id, activity_type, db
)
)
if (
session_record["activity_name"]
and session_record["activity_name"] != "Workout"
):
activity_name = session_record["activity_name"]
# Calculate elevation gain/loss, pace, average speed, and average power
total_timer_time, pace = calculate_pace(
session_record["session"]["distance"],
session_record["session"]["total_timer_time"],
session_record["session"]["activity_type"],
session_record["split_summary"],
)
if activity_type != 3 and activity_type != 7:
if session_record["is_lat_lon_set"]:
timezone = tf.timezone_at(
lat=session_record["lat_lon_waypoints"][0]["lat"],
lng=session_record["lat_lon_waypoints"][0]["lon"],
)
else:
if session_record["time_offset"]:
timezone = find_timezone_name(
session_record["time_offset"],
session_record["session"]["first_waypoint_time"],
)
avg_power = session_record["session"]["avg_power"]
max_power = session_record["session"]["max_power"]
if avg_power is None:
if session_record["is_power_set"]:
avg_power, max_power = activities_utils.calculate_avg_and_max(
session_record["power_waypoints"], "power"
)
np_power = session_record["session"]["np"]
if np_power is None:
if session_record["is_power_set"]:
np_power = activities_utils.calculate_np(
session_record["power_waypoints"]
)
parsed_activity = {
# Create an Activity object with parsed data
"activity": activities_schema.Activity(
user_id=user_id,
name=activity_name,
distance=(
round(session_record["session"]["distance"])
if session_record["session"]["distance"]
else 0
),
activity_type=activity_type,
start_time=session_record["session"][
"first_waypoint_time"
].strftime("%Y-%m-%dT%H:%M:%S"),
end_time=session_record["session"]["last_waypoint_time"].strftime(
"%Y-%m-%dT%H:%M:%S"
),
timezone=timezone,
total_elapsed_time=session_record["session"]["total_elapsed_time"],
total_timer_time=total_timer_time,
city=session_record["session"]["city"],
town=session_record["session"]["town"],
country=session_record["session"]["country"],
elevation_gain=session_record["session"]["ele_gain"],
elevation_loss=session_record["session"]["ele_loss"],
pace=pace,
average_speed=session_record["session"]["avg_speed"],
max_speed=session_record["session"]["max_speed"],
average_power=round(avg_power) if avg_power else None,
max_power=round(max_power) if max_power else None,
normalized_power=round(np_power) if np_power else None,
average_hr=session_record["session"]["avg_hr"],
max_hr=session_record["session"]["max_hr"],
average_cad=session_record["session"]["avg_cadence"],
max_cad=session_record["session"]["max_cadence"],
workout_feeling=session_record["session"]["workout_feeling"],
workout_rpe=session_record["session"]["workout_rpe"],
calories=session_record["session"]["calories"],
visibility=(
user_privacy_settings.default_activity_visibility
if user_privacy_settings.default_activity_visibility is not None
else 0
),
gear_id=gear_id,
strava_gear_id=None,
strava_activity_id=None,
garminconnect_activity_id=garmin_activity_id,
garminconnect_gear_id=(
garminconnect_gear[0]["uuid"] if garminconnect_gear else None
),
hide_start_time=user_privacy_settings.hide_activity_start_time
or False,
hide_location=user_privacy_settings.hide_activity_location or False,
hide_map=user_privacy_settings.hide_activity_map or False,
hide_hr=user_privacy_settings.hide_activity_hr or False,
hide_power=user_privacy_settings.hide_activity_power or False,
hide_cadence=user_privacy_settings.hide_activity_cadence or False,
hide_elevation=user_privacy_settings.hide_activity_elevation
or False,
hide_speed=user_privacy_settings.hide_activity_speed or False,
hide_pace=user_privacy_settings.hide_activity_pace or False,
hide_laps=user_privacy_settings.hide_activity_laps or False,
hide_workout_sets_steps=user_privacy_settings.hide_activity_workout_sets_steps
or False,
hide_gear=user_privacy_settings.hide_activity_gear or False,
),
"is_elevation_set": session_record["is_elevation_set"],
"ele_waypoints": session_record["ele_waypoints"],
"is_power_set": session_record["is_power_set"],
"power_waypoints": session_record["power_waypoints"],
"is_heart_rate_set": session_record["is_heart_rate_set"],
"hr_waypoints": session_record["hr_waypoints"],
"is_velocity_set": session_record["is_velocity_set"],
"vel_waypoints": session_record["vel_waypoints"],
"pace_waypoints": session_record["pace_waypoints"],
"is_cadence_set": session_record["is_cadence_set"],
"cad_waypoints": session_record["cad_waypoints"],
"is_lat_lon_set": session_record["is_lat_lon_set"],
"lat_lon_waypoints": session_record["lat_lon_waypoints"],
"laps": session_record["laps"],
"sets": session_record["sets"],
"workout_steps": session_record["workout_steps"],
}
activities.append(parsed_activity)
return activities
except HTTPException as http_err:
raise http_err
except Exception as err:
# Log the exception
core_logger.print_to_log(
f"Error in create_activity_objects: {err}", "error", exc=err
)
# Raise an HTTPException with a 500 Internal Server Error status code
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Can't parse FIT file sessions",
) from err
def split_records_by_activity(parsed_data: dict) -> dict:
sessions = parsed_data["sessions"]
lat_lon_waypoints = parsed_data["lat_lon_waypoints"]
ele_waypoints = parsed_data.get("ele_waypoints", [])
hr_waypoints = parsed_data.get("hr_waypoints", [])
cad_waypoints = parsed_data.get("cad_waypoints", [])
power_waypoints = parsed_data.get("power_waypoints", [])
vel_waypoints = parsed_data.get("vel_waypoints", [])
pace_waypoints = parsed_data.get("pace_waypoints", [])
# Check for each auxiliary flag
is_lat_lon_set = parsed_data.get("is_lat_lon_set", False)
is_elevation_set = parsed_data.get("is_elevation_set", False)
is_heart_rate_set = parsed_data.get("is_heart_rate_set", False)
is_cadence_set = parsed_data.get("is_cadence_set", False)
is_power_set = parsed_data.get("is_power_set", False)
is_velocity_set = parsed_data.get("is_velocity_set", False)
# Dictionary to hold split waypoints per activity
activity_waypoints = {
i: {
"lat_lon_waypoints": [] if is_lat_lon_set else None,
"ele_waypoints": [] if is_elevation_set else None,
"hr_waypoints": [] if is_heart_rate_set else None,
"cad_waypoints": [] if is_cadence_set else None,
"power_waypoints": [] if is_power_set else None,
"vel_waypoints": [] if is_velocity_set else None,
"pace_waypoints": [] if is_velocity_set else None,
}
for i in range(len(sessions))
}
sessions_records = []
# Convert session times to datetime objects for easier comparison
for i, session in enumerate(sessions):
# Use the time as is if its already a datetime object; otherwise, parse it
start_time = session["first_waypoint_time"]
if not isinstance(start_time, datetime):
start_time = datetime.strptime(start_time, "%Y-%m-%dT%H:%M:%S")
end_time = session.get("last_waypoint_time", start_time)
if not isinstance(end_time, datetime):
end_time = datetime.strptime(end_time, "%Y-%m-%dT%H:%M:%S")
# Make both timezone-naive (removes timezone info).
start_time = start_time.replace(tzinfo=None)
end_time = end_time.replace(tzinfo=None)
laps_records = []
if parsed_data["laps"]:
for lap in parsed_data["laps"]:
# Check if the lap's start time is within the session's start and end times
if start_time <= lap["start_time"] <= end_time:
# Append the lap to the session's laps
laps_records.append(lap)
# Initialize a parsed session dictionary
parsed_session = {
"session": session,
"time_offset": parsed_data["time_offset"],
"activity_name": parsed_data["activity_name"],
"lat_lon_waypoints": [],
"is_lat_lon_set": False,
"ele_waypoints": [],
"is_elevation_set": False,
"hr_waypoints": [],
"is_heart_rate_set": False,
"cad_waypoints": [],
"is_cadence_set": False,
"power_waypoints": [],
"is_power_set": False,
"vel_waypoints": [],
"pace_waypoints": [],
"is_velocity_set": False,
"laps": laps_records,
"split_summary": parsed_data["split_summary"],
"workout_steps": parsed_data["workout_steps"],
"sets": parsed_data["sets"],
}
# Only parse arrays if the respective flag is set
if is_lat_lon_set:
activity_waypoints[i]["lat_lon_waypoints"] = [
wp
for wp in lat_lon_waypoints
if start_time
<= datetime.strptime(wp["time"], "%Y-%m-%dT%H:%M:%S")
<= end_time
]
# If there are waypoints, set the parsed session's waypoints and flag
if activity_waypoints[i]["lat_lon_waypoints"]:
parsed_session["lat_lon_waypoints"] = activity_waypoints[i][
"lat_lon_waypoints"
]
parsed_session["is_lat_lon_set"] = True
# If initial latitude and longitude are not set, set them to the first waypoint's coordinates
if (
parsed_session["session"]["initial_latitude"] is None
or parsed_session["session"]["initial_longitude"] is None
):
# Set initial latitude and longitude to the first waypoint's coordinates
parsed_session["session"]["initial_latitude"] = activity_waypoints[
i
]["lat_lon_waypoints"][0]["lat"]
parsed_session["session"]["initial_longitude"] = activity_waypoints[
i
]["lat_lon_waypoints"][0]["lon"]
# Use geocoding API to get city, town, and country based on coordinates
location_data = activities_utils.location_based_on_coordinates(
session["initial_latitude"], session["initial_longitude"]
)
# Extract city, town, and country from location data
if location_data:
parsed_session["session"]["city"] = location_data["city"]
parsed_session["session"]["town"] = location_data["town"]
parsed_session["session"]["country"] = location_data["country"]
if is_elevation_set:
activity_waypoints[i]["ele_waypoints"] = [
wp
for wp in ele_waypoints
if start_time
<= datetime.strptime(wp["time"], "%Y-%m-%dT%H:%M:%S")
<= end_time
]
# If there are waypoints, set the parsed session's waypoints and flag
if activity_waypoints[i]["ele_waypoints"]:
parsed_session["ele_waypoints"] = activity_waypoints[i]["ele_waypoints"]
parsed_session["is_elevation_set"] = True
if is_heart_rate_set:
activity_waypoints[i]["hr_waypoints"] = [
wp
for wp in hr_waypoints
if start_time
<= datetime.strptime(wp["time"], "%Y-%m-%dT%H:%M:%S")
<= end_time
]
# If there are waypoints, set the parsed session's waypoints and flag
if activity_waypoints[i]["hr_waypoints"]:
parsed_session["hr_waypoints"] = activity_waypoints[i]["hr_waypoints"]
parsed_session["is_heart_rate_set"] = True
if is_cadence_set:
activity_waypoints[i]["cad_waypoints"] = [
wp
for wp in cad_waypoints
if start_time
<= datetime.strptime(wp["time"], "%Y-%m-%dT%H:%M:%S")
<= end_time
]
# If there are waypoints, set the parsed session's waypoints and flag
if activity_waypoints[i]["cad_waypoints"]:
parsed_session["cad_waypoints"] = activity_waypoints[i]["cad_waypoints"]
parsed_session["is_cadence_set"] = True
if is_power_set:
activity_waypoints[i]["power_waypoints"] = [
wp
for wp in power_waypoints
if start_time
<= datetime.strptime(wp["time"], "%Y-%m-%dT%H:%M:%S")
<= end_time
]
# If there are waypoints, set the parsed session's waypoints and flag
if activity_waypoints[i]["power_waypoints"]:
parsed_session["power_waypoints"] = activity_waypoints[i][
"power_waypoints"
]
parsed_session["is_power_set"] = True
if is_velocity_set:
activity_waypoints[i]["vel_waypoints"] = [
wp
for wp in vel_waypoints
if start_time
<= datetime.strptime(wp["time"], "%Y-%m-%dT%H:%M:%S")
<= end_time
]
# If there are waypoints, set the parsed session's waypoints and flag
if activity_waypoints[i]["vel_waypoints"]:
parsed_session["vel_waypoints"] = activity_waypoints[i]["vel_waypoints"]
parsed_session["is_velocity_set"] = True
activity_waypoints[i]["pace_waypoints"] = [
wp
for wp in pace_waypoints
if start_time
<= datetime.strptime(wp["time"], "%Y-%m-%dT%H:%M:%S")
<= end_time
]
# If there are waypoints, set the parsed session's waypoints and flag
if activity_waypoints[i]["pace_waypoints"]:
parsed_session["pace_waypoints"] = activity_waypoints[i][
"pace_waypoints"
]
parsed_session["is_velocity_set"] = True
# Append the parsed session to the sessions list
sessions_records.append(parsed_session)
# Return dictionary with each activity's waypoints
return sessions_records
def parse_fit_file(
file: str, db: Session, activity_name_input: str | None = None
) -> dict:
try:
# Initialize default values for various variables
sessions = []
time_offset = 0
last_waypoint_time = None
activity_name = activity_name_input if activity_name_input else "Workout"
# Arrays to store waypoint data
lat_lon_waypoints = []
ele_waypoints = []
hr_waypoints = []
cad_waypoints = []
power_waypoints = []
vel_waypoints = []
pace_waypoints = []
# Array to store laps
laps = []
# Array to store split waypoints
splits = []
# Array to store split summary info
split_summary = []
# Array to store sets
sets = []
# Array to store workout steps
workout_steps = []
# Array to store exercises titles
exercises_titles = []
# Initialize variables to store previous latitude and longitude
prev_latitude, prev_longitude = None, None
# Initialize variables to store whether elevation, power, heart rate, cadence, and velocity are set
is_lat_lon_set = False
is_elevation_set = False
is_power_set = False
is_heart_rate_set = False
is_cadence_set = False
is_velocity_set = False
# Open the FIT file
with open(file, "rb") as fit_file:
fit_data = fitdecode.FitReader(fit_file)
# Iterate over FIT messages
for frame in fit_data:
if isinstance(frame, fitdecode.FitDataMessage):
if frame.name == "session":
# Initialize session data
city, town, country = None, None, None
# Extract session data
(
initial_latitude,
initial_longitude,
activity_type,
first_waypoint_time,
total_elapsed_time,
total_timer_time,
calories,
distance,
avg_hr,
max_hr,
avg_cadence,
max_cadence,
avg_power,
max_power,
ele_gain,
ele_loss,
np,
avg_speed,
max_speed,
workout_feeling,
workout_rpe,
) = parse_frame_session(frame)
# If initial latitude and longitude are set, use them to get city, town, and country
if (
initial_latitude is not None
and initial_longitude is not None
):
# Use geocoding API to get city, town, and country based on coordinates
location_data = (
activities_utils.location_based_on_coordinates(
initial_latitude, initial_longitude
)
)
# Extract city, town, and country from location data
if location_data:
city = location_data["city"]
town = location_data["town"]
country = location_data["country"]
# Initialize the session dictionary with parsed data
session_data = {
"initial_latitude": initial_latitude,
"initial_longitude": initial_longitude,
"city": city,
"town": town,
"country": country,
"activity_type": activity_type,
"first_waypoint_time": first_waypoint_time,
"last_waypoint_time": first_waypoint_time
+ timedelta(seconds=total_elapsed_time),
"total_elapsed_time": total_elapsed_time,
"total_timer_time": total_timer_time,
"calories": calories,
"distance": distance,
"avg_hr": avg_hr,
"max_hr": max_hr,
"avg_cadence": avg_cadence,
"max_cadence": max_cadence,
"avg_power": avg_power,
"max_power": max_power,
"ele_gain": ele_gain,
"ele_loss": ele_loss,
"np": np,
"avg_speed": avg_speed,
"max_speed": max_speed,
"workout_feeling": workout_feeling,
"workout_rpe": workout_rpe,
}
# Append the session data to the sessions list
sessions.append(session_data)
# unknown_147 Sensor Accessories
# Extract activity name
if frame.name == "workout":
activity_name = parse_frame_workout(frame)
# Extract lap data
if frame.name == "lap":
laps.append(parse_frame_lap(frame))
# Extract split data
if frame.name in {"split", "unknown_312"}:
split_data = parse_frame_split(frame)
split_keys = [
"split_type",
"total_elapsed_time",
"total_timer_time",
"total_distance",
"avg_speed",
"start_time",
"total_ascent",
"total_descent",
"start_position_lat",
"start_position_long",
"end_position_lat",
"end_position_long",
"max_speed",
"end_time",
"total_calories",
"start_elevation",
]
splits.append(dict(zip(split_keys, split_data)))
# Extract split summary data
if frame.name in {"split_summary", "unknown_313"}:
split_summary_split_type, split_summary_total_timer_time = (
parse_frame_split_summary(frame)
)
split_summary.append(
{
"split_type": split_summary_split_type,
"total_timer_time": split_summary_total_timer_time,
}
)
# Extract set data
if frame.name == "set":
sets.append(parse_frame_set(frame))
# Extract workout step data
if frame.name == "workout_step":
workout_steps.append(parse_frame_workout_step(frame))
# Extract exercise title data
if frame.name == "exercise_title":
exercises_titles.append(parse_frame_exercise_title(frame))
# Extract waypoint data
if frame.name == "record":
# Extract values from record frame
(
latitude,
longitude,
elevation,
time,
heart_rate,
cadence,
power,
) = parse_frame_record(frame)
# Check elevation
if elevation is not None:
is_elevation_set = True
# Check if heart rate, cadence, power are set
if heart_rate is not None:
is_heart_rate_set = True
if cadence is not None:
is_cadence_set = True
if power is not None:
is_power_set = True
instant_speed = None
# Calculate instant speed, pace, and update waypoint arrays
if (
latitude is not None
and prev_latitude is not None
and longitude is not None
and prev_longitude is not None
):
instant_speed = activities_utils.calculate_instant_speed(
last_waypoint_time,
time,
latitude,
longitude,
prev_latitude,
prev_longitude,
)
# Calculate instance pace
instant_pace = None
if instant_speed:
instant_pace = 1 / instant_speed
is_velocity_set = True
timestamp = time.strftime("%Y-%m-%dT%H:%M:%S")
# Append waypoint data to respective arrays
if latitude is not None and longitude is not None:
lat_lon_waypoints.append(
{
"time": timestamp,
"lat": latitude,
"lon": longitude,
}
)
is_lat_lon_set = True
activities_utils.append_if_not_none(
ele_waypoints, timestamp, elevation, "ele"
)
activities_utils.append_if_not_none(
hr_waypoints, timestamp, heart_rate, "hr"
)
activities_utils.append_if_not_none(
cad_waypoints, timestamp, cadence, "cad"
)
activities_utils.append_if_not_none(
power_waypoints, timestamp, power, "power"
)
activities_utils.append_if_not_none(
vel_waypoints, timestamp, instant_speed, "vel"
)
activities_utils.append_if_not_none(
pace_waypoints, timestamp, instant_pace, "pace"
)
# Update previous latitude, longitude, and last waypoint time
prev_latitude, prev_longitude, last_waypoint_time = (
latitude,
longitude,
time,
)
if frame.name == "device_settings":
time_offset = parse_frame_device_settings(frame)
time_offset = interpret_time_offset(time_offset)
# Check if exercises titles is not none
if exercises_titles:
activity_exercise_titles_crud.create_activity_exercise_titles(
exercises_titles, db
)
# Return parsed data as a dictionary
return {
"sessions": sessions,
"time_offset": time_offset,
"activity_name": activity_name,
"is_elevation_set": is_elevation_set,
"ele_waypoints": ele_waypoints,
"is_power_set": is_power_set,
"power_waypoints": power_waypoints,
"is_heart_rate_set": is_heart_rate_set,
"hr_waypoints": hr_waypoints,
"is_velocity_set": is_velocity_set,
"vel_waypoints": vel_waypoints,
"pace_waypoints": pace_waypoints,
"is_cadence_set": is_cadence_set,
"cad_waypoints": cad_waypoints,
"is_lat_lon_set": is_lat_lon_set,
"lat_lon_waypoints": lat_lon_waypoints,
"laps": laps,
"splits": splits,
"split_summary": split_summary,
"sets": sets,
"workout_steps": workout_steps,
}
except HTTPException as http_err:
raise http_err
except Exception as err:
# Log the exception
core_logger.print_to_log(f"Error in parse_fit_file: {err}", "error", exc=err)
# Raise an HTTPException with a 500 Internal Server Error status code
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Can't parse FIT file",
) from err
def parse_frame_session(frame):
# Extracting coordinates
initial_latitude, initial_longitude = convert_coordinates_to_degrees(
get_value_from_frame(frame, "start_position_lat"),
get_value_from_frame(frame, "start_position_long"),
)
# Activity type logic
activity_type = get_value_from_frame(frame, "sport", "Workout")
sub_sport = get_value_from_frame(frame, "sub_sport")
if sub_sport and sub_sport != "generic":
if activity_type == "cycling" and sub_sport == "virtual_activity":
activity_type = "virtual_ride"
elif activity_type == "cycling" and sub_sport == "commuting":
activity_type = "commuting_ride"
elif activity_type == "cycling" and sub_sport == "indoor_cycling":
activity_type = "indoor_ride"
elif activity_type == "cycling" and sub_sport == "mixed_surface":
activity_type = "mixed_surface_ride"
elif activity_type == 64 and sub_sport == 85:
activity_type = "padel"
else:
activity_type = sub_sport
# Extracting time values
start_time = get_value_from_frame(frame, "start_time")
total_elapsed_time = get_value_from_frame(frame, "total_elapsed_time")
total_timer_time = get_value_from_frame(frame, "total_timer_time")
# Extracting other values
return (
initial_latitude,
initial_longitude,
activity_type,
start_time,
total_elapsed_time,
total_timer_time,
get_value_from_frame(frame, "total_calories"),
get_value_from_frame(frame, "total_distance"),
get_value_from_frame(frame, "avg_heart_rate"),
get_value_from_frame(frame, "max_heart_rate"),
get_value_from_frame(frame, "avg_cadence"),
get_value_from_frame(frame, "max_cadence"),
get_value_from_frame(frame, "avg_power"),
get_value_from_frame(frame, "max_power"),
get_value_from_frame(frame, "total_ascent"),
get_value_from_frame(frame, "total_descent"),
get_value_from_frame(frame, "normalized_power"),
get_value_from_frame(frame, "enhanced_avg_speed"),
get_value_from_frame(frame, "enhanced_max_speed"),
get_value_from_frame(frame, "workout_feeling"),
get_value_from_frame(frame, "workout_rpe"),
)
def parse_frame_workout(frame):
# Return the extracted name
return get_value_from_frame(frame, "wkt_name", "Workout")
def parse_frame_record(frame):
# Extracting data using the helper function
latitude = get_value_from_frame(frame, "position_lat")
longitude = get_value_from_frame(frame, "position_long")
elevation = get_value_from_frame(frame, "enhanced_altitude")
time = get_value_from_frame(frame, "timestamp")
if time:
time = time.replace(tzinfo=None)
heart_rate = get_value_from_frame(frame, "heart_rate")
cadence = get_value_from_frame(frame, "cadence")
power = get_value_from_frame(frame, "power")
latitude, longitude = convert_coordinates_to_degrees(latitude, longitude)
# Return all extracted values
return latitude, longitude, elevation, time, heart_rate, cadence, power
def parse_frame_lap(frame):
keys = [
"start_time",
"start_position_lat",
"start_position_long",
"end_position_lat",
"end_position_long",
"total_elapsed_time",
"total_timer_time",
"total_distance",
"total_cycles",
"total_calories",
"avg_heart_rate",
"max_heart_rate",
"avg_cadence",
"max_cadence",
"avg_power",
"max_power",
"total_ascent",
"total_descent",
"intensity",
"lap_trigger",
"sport",
"sub_sport",
"normalized_power",
"total_work",
"avg_vertical_oscillation",
"avg_stance_time",
"avg_fractional_cadence",
"max_fractional_cadence",
"enhanced_avg_speed",
"enhanced_max_speed",
"enhanced_min_altitude",
"enhanced_max_altitude",
"avg_vertical_ratio",
"avg_step_length",
]
lap_data = tuple(get_value_from_frame(frame, key) for key in keys)
lap_dict = dict(zip(keys, lap_data))
# Ensure start_time and end_time is timezone-naive
if isinstance(lap_dict["start_time"], datetime):
lap_dict["start_time"] = lap_dict["start_time"].replace(tzinfo=None)
(
lap_dict["start_position_lat"],
lap_dict["start_position_long"],
) = convert_coordinates_to_degrees(
lap_dict["start_position_lat"],
lap_dict["start_position_long"],
)
lap_dict["end_position_lat"], lap_dict["end_position_long"] = (
convert_coordinates_to_degrees(
lap_dict["end_position_lat"],
lap_dict["end_position_long"],
)
)
if lap_dict["enhanced_avg_speed"]:
lap_dict["enhanced_avg_pace"] = 1 / lap_dict["enhanced_avg_speed"]
if lap_dict["enhanced_max_speed"]:
lap_dict["enhanced_max_pace"] = 1 / lap_dict["enhanced_max_speed"]
return lap_dict
def parse_frame_split(frame):
# Define a list of keys and their default values
keys_defaults = [
("split_type", 0),
("total_elapsed_time", 1),
("total_timer_time", 2),
("total_distance", 3),
("avg_speed", 4),
("start_time", 9),
("total_ascent", 13),
("total_descent", 14),
("start_position_lat", 21),
("start_position_long", 22),
("end_position_lat", 23),
("end_position_long", 24),
("max_speed", 25),
("end_time", 27),
("total_calories", 28),
("start_elevation", 74),
]
# Extract values using the keys and defaults
values = [
get_value_from_frame(frame, key, get_value_from_frame(frame, default))
for key, default in keys_defaults
]
return tuple(values)
def parse_frame_split_summary(frame):
# split type
split_type = get_value_from_frame(frame, "split_type")
if split_type is None:
split_type = get_value_from_frame(frame, 0)
# total working time
total_timer_time = get_value_from_frame(frame, "total_timer_time")
if total_timer_time is None:
total_timer_time = get_value_from_frame(frame, 4)
if total_timer_time is not None:
total_timer_time = total_timer_time / 1000
return split_type, total_timer_time
def parse_frame_set(frame):
keys_value = [
"duration",
"repetitions",
"weight",
"set_type",
"start_time",
]
keys_raw = [
"category",
"category_subtype",
]
set_data = [get_value_from_frame(frame, key) for key in keys_value]
set_data.extend(get_raw_value_from_frame(frame, key) for key in keys_raw)
# Adjust category based on category_subtype
if set_data[5] is None:
set_data[5] = 0 if set_data[6] is not None else None
return list(set_data)
def parse_frame_workout_step(frame):
keys_value = [
"message_index",
"duration_type",
"duration_value",
"target_type",
"target_value",
"intensity",
"notes",
"exercise_weight",
"weight_display_unit",
]
keys_raw = [
"exercise_category",
"exercise_name",
]
workout_set_data = [get_value_from_frame(frame, key) for key in keys_value]
workout_set_data.extend(get_raw_value_from_frame(frame, key) for key in keys_raw)
secondary_target_value = None
if workout_set_data[3] == "swim_stroke":
if isinstance(workout_set_data[4], str):
secondary_target_value = workout_set_data[4]
workout_set_data[4] = None
elif isinstance(workout_set_data[4], int) and workout_set_data[4] == 255:
secondary_target_value = "any stroke"
workout_set_data[4] = None
if workout_set_data[5] == 7:
workout_set_data[5] = "active"
if workout_set_data[9] is None:
workout_set_data[9] = 0 if workout_set_data[10] is not None else None
return activity_workout_steps_schema.ActivityWorkoutSteps(
message_index=workout_set_data[0] if workout_set_data[0] else 0,
duration_type=workout_set_data[1],
duration_value=workout_set_data[2],
target_type=workout_set_data[3],
target_value=workout_set_data[4] if workout_set_data[4] else None,
intensity=workout_set_data[5] if type(workout_set_data[5]) == str else None,
notes=workout_set_data[6],
exercise_category=workout_set_data[9],
exercise_name=workout_set_data[10] if workout_set_data[10] else None,
exercise_weight=workout_set_data[7],
weight_display_unit=workout_set_data[8],
secondary_target_value=secondary_target_value,
)
def parse_frame_exercise_title(frame):
keys_value = [
"wkt_step_name",
]
keys_raw = [
"exercise_category",
"exercise_name",
]
exercise_title_data = [get_value_from_frame(frame, key) for key in keys_value]
exercise_title_data.extend(get_raw_value_from_frame(frame, key) for key in keys_raw)
return activity_exercise_titles_schema.ActivityExerciseTitles(
exercise_category=exercise_title_data[1] if exercise_title_data[1] else 0,
exercise_name=exercise_title_data[2] if exercise_title_data[2] else 0,
wkt_step_name=str(exercise_title_data[0]),
)
def parse_frame_device_settings(frame):
return get_value_from_frame(frame, "time_offset")
def interpret_time_offset(raw_offset):
# Check for two's complement representation (values > 2^31)
if raw_offset != 0 and raw_offset is not None:
if raw_offset > 2**31 - 1:
return raw_offset - 2**32
return raw_offset
def get_value_from_frame(frame, key, default=None):
try:
value = frame.get_value(key)
return value if value else default
except KeyError:
return default
def get_raw_value_from_frame(frame, key, default=None):
try:
raw_value = frame.get_raw_value(key)
return raw_value if raw_value else default
except KeyError:
return default
def convert_coordinates_to_degrees(latitude, longitude):
# Convert FIT coordinates to degrees if available
if latitude is not None and longitude is not None:
latitude = latitude * (180 / 2**31)
longitude = longitude * (180 / 2**31)
return latitude, longitude
def append_if_not_none(waypoint_list, time, value, key):
if value is not None:
waypoint_list.append({"time": time, key: value})
def calculate_pace(distance, total_timer_time, activity_type, split_summary):
if distance:
if activity_type != "lap_swimming":
return total_timer_time, total_timer_time / distance
time_active = 0
for split in split_summary:
if split["split_type"] != 4:
time_active += split["total_timer_time"]
return time_active, time_active / distance
return total_timer_time, 0
def find_timezone_name(offset_seconds, reference_date):
for tz_name in available_timezones():
tz = ZoneInfo(tz_name)
if reference_date.utcoffset() is None: # Skip invalid timezones
continue
# Get the UTC offset for the reference date
utc_offset = reference_date.astimezone(tz).utcoffset()
if utc_offset.total_seconds() == offset_seconds:
return tz_name