docs: update README.md (#338)

This commit is contained in:
Jseam
2023-07-03 17:41:02 -04:00
committed by GitHub
parent d895ab3023
commit 3bd2b967e4

View File

@@ -18,6 +18,7 @@ EZKL
1. Define a computational graph, for instance a neural network (but really any arbitrary set of operations), as you would normally in pytorch or tensorflow.
2. Export the final graph of operations as an [.onnx](https://onnx.ai/) file and some sample inputs to a `.json` file.
3. Point `ezkl` to the `.onnx` and `.json` files to generate a ZK-SNARK circuit with which you can prove statements such as:
> "I ran this publicly available neural network on some private data and it produced this output"
> "I ran my private neural network on some public data and it produced this output"
@@ -26,8 +27,10 @@ EZKL
In the backend we use [Halo2](https://github.com/privacy-scaling-explorations/halo2) as a proof system.
The generated proofs can then be used on-chain to verify computation, only the Ethereum Virtual Machine (EVM) is supported at the moment.
- If you have any questions, we'd love for you to open up a discussion topic in [Discussions](https://github.com/zkonduit/ezkl/discussions). Alternatively, you can join the ✨[EZKL Community Telegram Group](https://t.me/+76OjHb5CwJtkMTBh)💫.
- If you have any questions, we'd love for you to open up a discussion topic in [Discussions](https://github.com/zkonduit/ezkl/discussions). Alternatively, you can join the ✨[EZKL Community Telegram Group](https://t.me/+QRzaRvTPIthlYWMx)💫.
### resources 📖
@@ -35,9 +38,10 @@ In the backend we use [Halo2](https://github.com/privacy-scaling-explorations/ha
| | |
| --- | --- |
| [docs](https://docs.ezkl.xyz ) | the official ezkl docs page |
| [colab notebook demo](https://colab.research.google.com/drive/1XuXNKqH7axOelZXyU3gpoTOCvFetIsKu?usp=sharing) | demo of ezkl python bindings on google's colab
| [tutorial](https://github.com/zkonduit/pyezkl/tree/main/examples/tutorial) | end-to-end tutorial using pytorch and ezkl |
| [notebook](https://github.com/zkonduit/pyezkl/blob/main/examples/ezkl_demo.ipynb) | end-to-end tutorial using pytorch and ezkl in a jupyter notebook |
| `cargo doc --open` | compile and open the docs in your default browser |
| `cargo doc --open` | compile and open the docs in your default browser locally |
----------------------
@@ -46,7 +50,6 @@ In the backend we use [Halo2](https://github.com/privacy-scaling-explorations/ha
https://user-images.githubusercontent.com/45801863/236771676-5bbbbfd1-ba6f-418a-902e-20738ce0e9f0.mp4
@@ -90,12 +93,8 @@ The EZKL project has several libraries and repos.
| Repo | Description |
| --- | --- |
| [@zkonduit/ezkl](https://github.com/zkonduit/ezkl) | the main ezkl repo in rust |
| [@zkonduit/pyezkl](https://github.com/zkonduit/pyezkl) | helper functions in python for processing onnx files |
| [@zkonduit/ezkl-docs](https://github.com/zkonduit/ezkl-docs) | official ezkl docs |
| [@zkonduit/ezkl](https://github.com/zkonduit/ezkl) | the main ezkl repo in rust with wasm and python bindings |
| [@zkonduit/pyezkl](https://github.com/zkonduit/pyezkl) | additional functionality written in python to support data science and zero knowledge applications |
----------------------
@@ -113,4 +112,3 @@ More broadly:
- For PRs we use the [conventional commits](https://www.conventionalcommits.org/en/v1.0.0/) naming convention.
- To report bugs or request new features [create a new issue within Issues](https://github.com/zkonduit/ezkl/issues) to inform the greater community.