Files
ezkl/examples/tensor_contraction.rs
dante 365d92a5f2 feat: implement generalized Freivalds' algorithm for arbitrary einsum (#990)
---------

Co-authored-by: DoHoon Kim <59155248+DoHoonKim8@users.noreply.github.com>
Co-authored-by: therealyingtong <yingtong.lai@gmail.com>
Co-authored-by: DoHoonKim <dohoon1097819@gmail.com>
2025-10-08 07:34:32 -04:00

183 lines
5.4 KiB
Rust

use ezkl::circuit::einsum::analysis::analyze_einsum_usage;
use ezkl::circuit::poly::PolyOp;
use ezkl::circuit::*;
use ezkl::tensor::*;
use halo2_proofs::circuit::floor_planner::V1;
use halo2_proofs::dev::MockProver;
use halo2_proofs::{
arithmetic::Field,
circuit::{Layouter, Value},
plonk::{Circuit, ConstraintSystem, Error},
};
use halo2curves::bn256::Fr;
use halo2curves::ff::PrimeField;
use itertools::Itertools;
use rand::rngs::OsRng;
use std::collections::HashMap;
use std::marker::PhantomData;
static mut LEN: usize = 4;
const K: usize = 11;
#[derive(Clone)]
struct MyCircuit<F: PrimeField + TensorType + PartialOrd> {
inputs: [ValTensor<F>; 2],
einsum: Einsum<F>,
}
#[derive(Clone, Default)]
struct Einsum<F: PrimeField + TensorType + PartialOrd> {
equation: String,
input_axes_to_dims: HashMap<char, usize>,
_marker: PhantomData<F>,
}
impl<F: PrimeField + TensorType + PartialOrd> Einsum<F> {
pub fn new(equation: &str, inputs: &[&Tensor<Value<F>>]) -> Result<Self, CircuitError> {
let mut eq = equation.split("->");
let inputs_eq = eq.next().ok_or(CircuitError::InvalidEinsum)?;
let inputs_eq = inputs_eq.split(',').collect::<Vec<_>>();
// Check that the number of inputs matches the number of inputs in the equation
if inputs.len() != inputs_eq.len() {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
let mut input_axes_to_dims = HashMap::new();
for (i, input) in inputs.iter().enumerate() {
for j in 0..inputs_eq[i].len() {
let c = inputs_eq[i]
.chars()
.nth(j)
.ok_or(CircuitError::InvalidEinsum)?;
if let std::collections::hash_map::Entry::Vacant(e) = input_axes_to_dims.entry(c) {
e.insert(input.dims()[j]);
} else if input_axes_to_dims[&c] != input.dims()[j] {
return Err(TensorError::DimMismatch("einsum".to_string()).into());
}
}
}
Ok(Self {
equation: equation.to_owned(),
input_axes_to_dims,
_marker: PhantomData,
})
}
}
impl Circuit<Fr> for MyCircuit<Fr> {
type Config = BaseConfig<Fr>;
type FloorPlanner = V1;
type Params = Einsum<Fr>;
fn without_witnesses(&self) -> Self {
self.clone()
}
fn configure_with_params(cs: &mut ConstraintSystem<Fr>, params: Self::Params) -> Self::Config {
let len = unsafe { LEN };
let a = VarTensor::new_advice(cs, K, 1, len);
let b = VarTensor::new_advice(cs, K, 1, len);
let output = VarTensor::new_advice(cs, K, 1, len);
let mut config = Self::Config::configure(cs, &[a, b], &output, CheckMode::UNSAFE);
let mut equations = HashMap::new();
equations.insert((0, params.equation), params.input_axes_to_dims);
let analysis = analyze_einsum_usage(&equations).unwrap();
let num_einsum_inner_cols = 2;
config
.configure_einsums(cs, &analysis, num_einsum_inner_cols, K)
.unwrap();
let _constant = VarTensor::constant_cols(cs, K, 2, false);
config
}
fn params(&self) -> Self::Params {
Einsum::<Fr>::new(
&self.einsum.equation,
&[
&self.inputs[0].get_inner().unwrap(),
&self.inputs[1].get_inner().unwrap(),
],
)
.unwrap()
}
fn configure(_cs: &mut ConstraintSystem<Fr>) -> Self::Config {
unimplemented!("call configure_with_params instead")
}
fn synthesize(
&self,
mut config: Self::Config,
mut layouter: impl Layouter<Fr>,
) -> Result<(), Error> {
let challenges = config
.einsums
.as_ref()
.ok_or(Error::Synthesis)?
.challenges()
.unwrap()
.iter()
.map(|c| layouter.get_challenge(*c))
.collect_vec();
layouter.assign_region(
|| "",
|region| {
let mut region = region::RegionCtx::new_with_challenges(
region,
0,
1,
1024,
2,
challenges.clone(),
);
config
.layout(
&mut region,
&self.inputs.iter().collect_vec(),
Box::new(PolyOp::Einsum {
equation: self.einsum.equation.clone(),
}),
)
.unwrap();
Ok(())
},
)?;
Ok(())
}
}
fn runmatmul() {
let i = 10;
let n = 10;
let j = 40;
let k = 10;
let mut a = Tensor::from((0..i * n * j).map(|_| Value::known(Fr::random(OsRng))));
a.reshape(&[i, n, j]).unwrap();
// parameters
let mut b = Tensor::from((0..j * k).map(|_| Value::known(Fr::random(OsRng))));
b.reshape(&[j, k]).unwrap();
let einsum = Einsum::<Fr>::new("inj,jk->ik", &[&a, &b]).unwrap();
let circuit = MyCircuit {
inputs: [ValTensor::from(a), ValTensor::from(b)],
einsum,
};
let mock_prover = MockProver::run(K as u32, &circuit, vec![]).unwrap();
mock_prover.assert_satisfied();
}
pub fn main() {
runmatmul()
}