Remove torch dependency, Faster numpy Feature extraction (#1106)

This commit is contained in:
Mahmoud Ashraf
2024-11-14 11:57:10 +02:00
committed by GitHub
parent 8f01aee36b
commit 3e0ba86571
6 changed files with 203 additions and 118 deletions

View File

@@ -14,7 +14,6 @@ from typing import BinaryIO, Union
import av
import numpy as np
import torch
def decode_audio(
@@ -72,9 +71,9 @@ def decode_audio(
if split_stereo:
left_channel = audio[0::2]
right_channel = audio[1::2]
return torch.from_numpy(left_channel), torch.from_numpy(right_channel)
return left_channel, right_channel
return torch.from_numpy(audio)
return audio
def _ignore_invalid_frames(frames):
@@ -113,20 +112,12 @@ def pad_or_trim(array, length: int = 3000, *, axis: int = -1):
"""
Pad or trim the Mel features array to 3000, as expected by the encoder.
"""
axis = axis % array.ndim
if array.shape[axis] > length:
idx = [Ellipsis] * axis + [slice(length)] + [Ellipsis] * (array.ndim - axis - 1)
return array[idx]
array = array.take(indices=range(length), axis=axis)
if array.shape[axis] < length:
pad_widths = (
[
0,
]
* array.ndim
* 2
)
pad_widths[2 * axis] = length - array.shape[axis]
array = torch.nn.functional.pad(array, tuple(pad_widths[::-1]))
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = np.pad(array, pad_widths)
return array

View File

@@ -1,21 +1,15 @@
import torch
import numpy as np
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/feature_extraction_whisper.py # noqa: E501
class FeatureExtractor:
def __init__(
self,
device: str = "auto",
feature_size=80,
sampling_rate=16000,
hop_length=160,
chunk_length=30,
n_fft=400,
):
if device == "auto":
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.n_fft = n_fft
self.hop_length = hop_length
self.chunk_length = chunk_length
@@ -25,24 +19,21 @@ class FeatureExtractor:
self.sampling_rate = sampling_rate
self.mel_filters = self.get_mel_filters(
sampling_rate, n_fft, n_mels=feature_size
)
).astype("float32")
@staticmethod
def get_mel_filters(sr, n_fft, n_mels=128):
"""
Implementation of librosa.filters.mel in Pytorch
"""
# Initialize the weights
n_mels = int(n_mels)
# Center freqs of each FFT bin
fftfreqs = torch.fft.rfftfreq(n=n_fft, d=1.0 / sr)
fftfreqs = np.fft.rfftfreq(n=n_fft, d=1.0 / sr)
# 'Center freqs' of mel bands - uniformly spaced between limits
min_mel = 0.0
max_mel = 45.245640471924965
mels = torch.linspace(min_mel, max_mel, n_mels + 2)
mels = np.linspace(min_mel, max_mel, n_mels + 2)
# Fill in the linear scale
f_min = 0.0
@@ -52,30 +43,159 @@ class FeatureExtractor:
# And now the nonlinear scale
min_log_hz = 1000.0 # beginning of log region (Hz)
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
logstep = torch.log(torch.tensor(6.4)) / 27.0 # step size for log region
logstep = np.log(6.4) / 27.0 # step size for log region
# If we have vector data, vectorize
log_t = mels >= min_log_mel
freqs[log_t] = min_log_hz * torch.exp(logstep * (mels[log_t] - min_log_mel))
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
mel_f = freqs
fdiff = np.diff(freqs)
ramps = freqs.reshape(-1, 1) - fftfreqs.reshape(1, -1)
fdiff = torch.diff(mel_f)
ramps = mel_f.view(-1, 1) - fftfreqs.view(1, -1)
lower = -ramps[:-2] / fdiff[:-1].unsqueeze(1)
upper = ramps[2:] / fdiff[1:].unsqueeze(1)
lower = -ramps[:-2] / np.expand_dims(fdiff[:-1], axis=1)
upper = ramps[2:] / np.expand_dims(fdiff[1:], axis=1)
# Intersect them with each other and zero, vectorized across all i
weights = torch.maximum(torch.zeros_like(lower), torch.minimum(lower, upper))
weights = np.maximum(np.zeros_like(lower), np.minimum(lower, upper))
# Slaney-style mel is scaled to be approx constant energy per channel
enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
weights *= enorm.unsqueeze(1)
enorm = 2.0 / (freqs[2 : n_mels + 2] - freqs[:n_mels])
weights *= np.expand_dims(enorm, axis=1)
return weights
def __call__(self, waveform, padding=True, chunk_length=None, to_cpu=False):
@staticmethod
def stft(
input_array: np.ndarray,
n_fft: int,
hop_length: int = None,
win_length: int = None,
window: np.ndarray = None,
center: bool = True,
mode: str = "reflect",
normalized: bool = False,
onesided: bool = None,
return_complex: bool = None,
):
# Default initialization for hop_length and win_length
hop_length = hop_length if hop_length is not None else n_fft // 4
win_length = win_length if win_length is not None else n_fft
input_is_complex = np.iscomplexobj(input_array)
# Determine if the output should be complex
return_complex = (
return_complex
if return_complex is not None
else (input_is_complex or (window is not None and np.iscomplexobj(window)))
)
if not return_complex and return_complex is None:
raise ValueError(
"stft requires the return_complex parameter for real inputs."
)
# Input checks
if not np.issubdtype(input_array.dtype, np.floating) and not input_is_complex:
raise ValueError(
"stft: expected an array of floating point or complex values,"
f" got {input_array.dtype}"
)
if input_array.ndim > 2 or input_array.ndim < 1:
raise ValueError(
f"stft: expected a 1D or 2D array, but got {input_array.ndim}D array"
)
# Handle 1D input
if input_array.ndim == 1:
input_array = np.expand_dims(input_array, axis=0)
input_array_1d = True
else:
input_array_1d = False
# Center padding if required
if center:
pad_amount = n_fft // 2
input_array = np.pad(
input_array, ((0, 0), (pad_amount, pad_amount)), mode=mode
)
batch, length = input_array.shape
# Additional input checks
if n_fft <= 0 or n_fft > length:
raise ValueError(
f"stft: expected 0 < n_fft <= {length}, but got n_fft={n_fft}"
)
if hop_length <= 0:
raise ValueError(
f"stft: expected hop_length > 0, but got hop_length={hop_length}"
)
if win_length <= 0 or win_length > n_fft:
raise ValueError(
f"stft: expected 0 < win_length <= n_fft, but got win_length={win_length}"
)
if window is not None:
if window.ndim != 1 or window.shape[0] != win_length:
raise ValueError(
f"stft: expected a 1D window array of size equal to win_length={win_length}, "
f"but got window with size {window.shape}"
)
# Handle padding of the window if necessary
if win_length < n_fft:
left = (n_fft - win_length) // 2
window_ = np.zeros(n_fft, dtype=window.dtype)
window_[left : left + win_length] = window
else:
window_ = window
# Calculate the number of frames
n_frames = 1 + (length - n_fft) // hop_length
# Time to columns
input_array = np.lib.stride_tricks.as_strided(
input_array,
(batch, n_frames, n_fft),
(
input_array.strides[0],
hop_length * input_array.strides[1],
input_array.strides[1],
),
)
if window_ is not None:
input_array = input_array * window_
# FFT and transpose
complex_fft = input_is_complex
onesided = onesided if onesided is not None else not complex_fft
if normalized:
norm = "ortho"
else:
norm = None
if complex_fft:
if onesided:
raise ValueError(
"Cannot have onesided output if window or input is complex"
)
output = np.fft.fft(input_array, n=n_fft, axis=-1, norm=norm)
else:
output = np.fft.rfft(input_array, n=n_fft, axis=-1, norm=norm)
output = output.transpose((0, 2, 1))
if input_array_1d:
output = output.squeeze(0)
return output if return_complex else np.real(output)
def __call__(self, waveform: np.ndarray, padding=160, chunk_length=None):
"""
Compute the log-Mel spectrogram of the provided audio.
"""
@@ -84,31 +204,27 @@ class FeatureExtractor:
self.n_samples = chunk_length * self.sampling_rate
self.nb_max_frames = self.n_samples // self.hop_length
if waveform.dtype is not torch.float32:
waveform = waveform.to(torch.float32)
waveform = (
waveform.to(self.device)
if self.device == "cuda" and not waveform.is_cuda
else waveform
)
if waveform.dtype is not np.float32:
waveform = waveform.astype(np.float32)
if padding:
waveform = torch.nn.functional.pad(waveform, (0, self.n_samples))
waveform = np.pad(waveform, (0, padding))
window = torch.hann_window(self.n_fft).to(waveform.device)
window = np.hanning(self.n_fft + 1)[:-1].astype("float32")
stft = torch.stft(
waveform, self.n_fft, self.hop_length, window=window, return_complex=True
)
magnitudes = stft[..., :-1].abs() ** 2
stft = self.stft(
waveform,
self.n_fft,
self.hop_length,
window=window,
return_complex=True,
).astype("complex64")
magnitudes = np.abs(stft[..., :-1]) ** 2
mel_spec = self.mel_filters.to(waveform.device) @ magnitudes
mel_spec = self.mel_filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = np.log10(np.clip(mel_spec, a_min=1e-10, a_max=None))
log_spec = np.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
# When the model is running on multiple GPUs, the output should be moved
# to the CPU since we don't know which GPU will handle the next job.
return log_spec.cpu() if to_cpu else log_spec
return log_spec

View File

@@ -15,7 +15,6 @@ from warnings import warn
import ctranslate2
import numpy as np
import tokenizers
import torch
from tqdm import tqdm
@@ -228,7 +227,7 @@ class BatchedInferencePipeline:
def transcribe(
self,
audio: Union[str, BinaryIO, torch.Tensor, np.ndarray],
audio: Union[str, BinaryIO, np.ndarray],
language: Optional[str] = None,
task: str = None,
log_progress: bool = False,
@@ -357,9 +356,7 @@ class BatchedInferencePipeline:
sampling_rate = self.model.feature_extractor.sampling_rate
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio)
elif not isinstance(audio, torch.Tensor):
if not isinstance(audio, np.ndarray):
audio = decode_audio(audio, sampling_rate=sampling_rate)
duration = audio.shape[0] / sampling_rate
@@ -457,14 +454,11 @@ class BatchedInferencePipeline:
)
audio_chunks, chunks_metadata = collect_chunks(audio, clip_timestamps)
to_cpu = (
self.model.model.device == "cuda" and len(self.model.model.device_index) > 1
)
features = (
torch.stack(
np.stack(
[
pad_or_trim(
self.model.feature_extractor(chunk, to_cpu=to_cpu)[
self.model.feature_extractor(chunk)[
...,
: chunk.shape[0] // self.model.feature_extractor.hop_length,
]
@@ -610,9 +604,7 @@ class WhisperModel:
"openai/whisper-tiny" + ("" if self.model.is_multilingual else ".en")
)
self.feat_kwargs = self._get_feature_kwargs(model_path, preprocessor_bytes)
self.feature_extractor = FeatureExtractor(
**self.feat_kwargs, device=self.device
)
self.feature_extractor = FeatureExtractor(**self.feat_kwargs)
self.input_stride = 2
self.num_samples_per_token = (
self.feature_extractor.hop_length * self.input_stride
@@ -651,7 +643,7 @@ class WhisperModel:
def transcribe(
self,
audio: Union[str, BinaryIO, torch.Tensor, np.ndarray],
audio: Union[str, BinaryIO, np.ndarray],
language: Optional[str] = None,
task: str = "transcribe",
beam_size: int = 5,
@@ -779,9 +771,7 @@ class WhisperModel:
sampling_rate = self.feature_extractor.sampling_rate
if isinstance(audio, np.ndarray):
audio = torch.from_numpy(audio)
elif not isinstance(audio, torch.Tensor):
if not isinstance(audio, np.ndarray):
audio = decode_audio(audio, sampling_rate=sampling_rate)
duration = audio.shape[0] / sampling_rate
@@ -798,7 +788,7 @@ class WhisperModel:
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio_chunks, chunks_metadata = collect_chunks(audio, speech_chunks)
audio = torch.cat(audio_chunks, dim=0)
audio = np.concatenate(audio_chunks, axis=0)
duration_after_vad = audio.shape[0] / sampling_rate
self.logger.info(
@@ -822,10 +812,7 @@ class WhisperModel:
else:
speech_chunks = None
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
features = self.feature_extractor(
audio, chunk_length=chunk_length, to_cpu=to_cpu
)
features = self.feature_extractor(audio, chunk_length=chunk_length)
encoder_output = None
all_language_probs = None
@@ -853,9 +840,7 @@ class WhisperModel:
if isinstance(clip_timestamps, str)
else clip_timestamps[0]
)
content_frames = (
features.shape[-1] - self.feature_extractor.nb_max_frames
)
content_frames = features.shape[-1] - 1
seek = (
int(start_timestamp * self.frames_per_second)
if start_timestamp * self.frames_per_second < content_frames
@@ -1053,12 +1038,12 @@ class WhisperModel:
def generate_segments(
self,
features: torch.Tensor,
features: np.ndarray,
tokenizer: Tokenizer,
options: TranscriptionOptions,
encoder_output: Optional[ctranslate2.StorageView] = None,
) -> Iterable[Segment]:
content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
content_frames = features.shape[-1] - 1
content_duration = float(content_frames * self.feature_extractor.time_per_frame)
if isinstance(options.clip_timestamps, str):
@@ -1356,13 +1341,13 @@ class WhisperModel:
prompt_reset_since = len(all_tokens)
def encode(self, features: torch.Tensor) -> ctranslate2.StorageView:
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
# When the model is running on multiple GPUs, the encoder output should be moved
# to the CPU since we don't know which GPU will handle the next job.
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
if features.ndim == 2:
features = features.unsqueeze(0)
features = np.expand_dims(features, 0)
features = get_ctranslate2_storage(features)
return self.model.encode(features, to_cpu=to_cpu)
@@ -1733,7 +1718,7 @@ class WhisperModel:
def generate_segment_batched(
self,
features: torch.Tensor,
features: np.ndarray,
tokenizer: Tokenizer,
options: dict,
):
@@ -1782,9 +1767,8 @@ class WhisperModel:
return encoder_output, output
def detect_language(self, audio: torch.Tensor):
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
segment = self.feature_extractor(audio, padding=True, to_cpu=to_cpu)[
def detect_language(self, audio: np.ndarray):
segment = self.feature_extractor(audio)[
:, : self.feature_extractor.nb_max_frames
]
encoder_output = self.encode(pad_or_trim(segment))
@@ -1798,7 +1782,7 @@ class WhisperModel:
return language, language_probability, all_language_probs
def detect_language_multi_segment(
self, audio: Union[str, BinaryIO, torch.Tensor], params: Optional[dict] = None
self, audio: Union[str, BinaryIO, np.ndarray], params: Optional[dict] = None
):
"""
Detect language based on N highly-confident segments of a language.
@@ -1834,8 +1818,8 @@ class WhisperModel:
# decode audio if it is not decoded already
sampling_rate = self.feature_extractor.sampling_rate
if not isinstance(audio, torch.Tensor):
audio: torch.Tensor = decode_audio(audio, sampling_rate=sampling_rate)
if not isinstance(audio, np.ndarray):
audio: np.ndarray = decode_audio(audio, sampling_rate=sampling_rate)
# calculate duration of audio as number of seconds
# audio.shape[0] is the number of samples in the audio
@@ -1850,7 +1834,7 @@ class WhisperModel:
speech_chunks = get_speech_timestamps(audio, vad_params)
# merge chunks of audio that contain speech into a single array
audio_chunks, chunks_metadata = collect_chunks(audio, speech_chunks)
audio = torch.cat(audio_chunks, dim=0)
audio = np.concatenate(audio_chunks, axis=0)
# calculate new duration of audio without silence
duration_vad = audio.shape[0] / sampling_rate
@@ -1874,8 +1858,7 @@ class WhisperModel:
nb_max_frames = self.feature_extractor.nb_max_frames
# extract features from audio with padding (default)
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
features = self.feature_extractor(audio, to_cpu=to_cpu)
features = self.feature_extractor(audio)
# number of segments in the audio
num_segments = features.shape[-1] // nb_max_frames
@@ -1987,8 +1970,8 @@ class WhisperModel:
dc_offset = audio.mean()
audio_minus_dc_offset = audio - dc_offset
is_silent = (
torch.all(audio.abs() < 0.01)
or torch.sqrt(torch.mean(audio_minus_dc_offset**2)) < 0.01
all(np.abs(audio) < 0.1)
or np.sqrt(np.mean(audio_minus_dc_offset**2)) < 0.01
)
if is_silent:
@@ -2032,12 +2015,9 @@ def restore_speech_timestamps(
yield segment
def get_ctranslate2_storage(segment: torch.Tensor) -> ctranslate2.StorageView:
segment = segment.contiguous()
segment = ctranslate2.StorageView.from_array(
segment if segment.is_cuda else segment.numpy()
) # torch cpu tensors don't implement __array_interface__
# https://github.com/pytorch/pytorch/issues/51156
def get_ctranslate2_storage(segment: np.ndarray) -> ctranslate2.StorageView:
segment = np.ascontiguousarray(segment)
segment = ctranslate2.StorageView.from_array(segment)
return segment

View File

@@ -6,7 +6,6 @@ from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import numpy as np
import torch
from faster_whisper.utils import get_assets_path
@@ -44,7 +43,7 @@ class VadOptions:
def get_speech_timestamps(
audio: torch.Tensor,
audio: np.ndarray,
vad_options: Optional[VadOptions] = None,
sampling_rate: int = 16000,
**kwargs,
@@ -84,7 +83,7 @@ def get_speech_timestamps(
model = get_vad_model()
padded_audio = np.pad(
audio.numpy(), (0, window_size_samples - audio.shape[0] % window_size_samples)
audio, (0, window_size_samples - audio.shape[0] % window_size_samples)
)
speech_probs = model(padded_audio.reshape(1, -1)).squeeze(0)
@@ -183,15 +182,15 @@ def get_speech_timestamps(
def collect_chunks(
audio: torch.Tensor, chunks: List[dict], sampling_rate: int = 16000
) -> Tuple[List[torch.Tensor], List[Dict[str, int]]]:
audio: np.ndarray, chunks: List[dict], sampling_rate: int = 16000
) -> Tuple[List[np.ndarray], List[Dict[str, int]]]:
"""Collects audio chunks."""
if not chunks:
chunk_metadata = {
"start_time": 0,
"end_time": 0,
}
return [torch.tensor([], dtype=torch.float32)], [chunk_metadata]
return [np.array([], dtype=np.float32)], [chunk_metadata]
audio_chunks = []
chunks_metadata = []
@@ -281,7 +280,7 @@ class SileroVADModel:
):
assert (
audio.ndim == 2
), "Input should be a 2D tensor with size (batch_size, num_samples)"
), "Input should be a 2D array with size (batch_size, num_samples)"
assert (
audio.shape[1] % num_samples == 0
), "Input size should be a multiple of num_samples"