revert back to using PyAV instead of torchaudio (#961)

* revert back to using PyAV instead of torch audio

* Update audio.py
This commit is contained in:
Mahmoud Ashraf
2024-10-23 15:26:18 +03:00
committed by GitHub
parent d57c5b40b0
commit 42b8681edb
2 changed files with 84 additions and 10 deletions

View File

@@ -1,7 +1,20 @@
"""We use the PyAV library to decode the audio: https://github.com/PyAV-Org/PyAV
The advantage of PyAV is that it bundles the FFmpeg libraries so there is no additional
system dependencies. FFmpeg does not need to be installed on the system.
However, the API is quite low-level so we need to manipulate audio frames directly.
"""
import gc
import io
import itertools
from typing import BinaryIO, Union
import av
import numpy as np
import torch
import torchaudio
def decode_audio(
@@ -17,22 +30,83 @@ def decode_audio(
split_stereo: Return separate left and right channels.
Returns:
A float32 Torch Tensor.
A float32 Numpy array.
If `split_stereo` is enabled, the function returns a 2-tuple with the
separated left and right channels.
"""
resampler = av.audio.resampler.AudioResampler(
format="s16",
layout="mono" if not split_stereo else "stereo",
rate=sampling_rate,
)
waveform, audio_sf = torchaudio.load(input_file) # waveform: channels X T
raw_buffer = io.BytesIO()
dtype = None
with av.open(input_file, mode="r", metadata_errors="ignore") as container:
frames = container.decode(audio=0)
frames = _ignore_invalid_frames(frames)
frames = _group_frames(frames, 500000)
frames = _resample_frames(frames, resampler)
for frame in frames:
array = frame.to_ndarray()
dtype = array.dtype
raw_buffer.write(array)
# It appears that some objects related to the resampler are not freed
# unless the garbage collector is manually run.
# https://github.com/SYSTRAN/faster-whisper/issues/390
# note that this slows down loading the audio a little bit
# if that is a concern, please use ffmpeg directly as in here:
# https://github.com/openai/whisper/blob/25639fc/whisper/audio.py#L25-L62
del resampler
gc.collect()
audio = np.frombuffer(raw_buffer.getbuffer(), dtype=dtype)
# Convert s16 back to f32.
audio = audio.astype(np.float32) / 32768.0
if audio_sf != sampling_rate:
waveform = torchaudio.functional.resample(
waveform, orig_freq=audio_sf, new_freq=sampling_rate
)
if split_stereo:
return waveform[0], waveform[1]
left_channel = audio[0::2]
right_channel = audio[1::2]
return torch.from_numpy(left_channel), torch.from_numpy(right_channel)
return waveform.mean(0)
return torch.from_numpy(audio)
def _ignore_invalid_frames(frames):
iterator = iter(frames)
while True:
try:
yield next(iterator)
except StopIteration:
break
except av.error.InvalidDataError:
continue
def _group_frames(frames, num_samples=None):
fifo = av.audio.fifo.AudioFifo()
for frame in frames:
frame.pts = None # Ignore timestamp check.
fifo.write(frame)
if num_samples is not None and fifo.samples >= num_samples:
yield fifo.read()
if fifo.samples > 0:
yield fifo.read()
def _resample_frames(frames, resampler):
# Add None to flush the resampler.
for frame in itertools.chain(frames, [None]):
yield from resampler.resample(frame)
def pad_or_trim(array, length: int, *, axis: int = -1):