Automatically download converted models from the Hugging Face Hub (#70)

* Automatically download converted models from the Hugging Face Hub

* Remove unused import

* Remove non needed requirements in dev mode

* Remove extra index URL when pip install in CI

* Allow downloading to a specific directory

* Update docstring

* Add argument to disable the progess bars

* Fix typo in docstring
This commit is contained in:
Guillaume Klein
2023-03-24 10:55:55 +01:00
committed by GitHub
parent 523ae2180f
commit de7682a2f0
10 changed files with 105 additions and 53 deletions

View File

@@ -1,9 +1,10 @@
from faster_whisper.audio import decode_audio
from faster_whisper.transcribe import WhisperModel
from faster_whisper.utils import format_timestamp
from faster_whisper.utils import download_model, format_timestamp
__all__ = [
"decode_audio",
"WhisperModel",
"download_model",
"format_timestamp",
]

View File

@@ -11,6 +11,7 @@ import tokenizers
from faster_whisper.audio import decode_audio
from faster_whisper.feature_extractor import FeatureExtractor
from faster_whisper.tokenizer import Tokenizer
from faster_whisper.utils import download_model
class Word(NamedTuple):
@@ -57,7 +58,7 @@ class TranscriptionOptions(NamedTuple):
class WhisperModel:
def __init__(
self,
model_path: str,
model_size_or_path: str,
device: str = "auto",
device_index: Union[int, List[int]] = 0,
compute_type: str = "default",
@@ -67,7 +68,9 @@ class WhisperModel:
"""Initializes the Whisper model.
Args:
model_path: Path to the converted model.
model_size_or_path: Size of the model to use (e.g. "large-v2", "small", "tiny.en", etc.)
or a path to a converted model directory. When a size is configured, the converted
model is downloaded from the Hugging Face Hub.
device: Device to use for computation ("cpu", "cuda", "auto").
device_index: Device ID to use.
The model can also be loaded on multiple GPUs by passing a list of IDs
@@ -82,6 +85,11 @@ class WhisperModel:
(concurrent calls to self.model.generate() will run in parallel).
This can improve the global throughput at the cost of increased memory usage.
"""
if os.path.isdir(model_size_or_path):
model_path = model_size_or_path
else:
model_path = download_model(model_size_or_path)
self.model = ctranslate2.models.Whisper(
model_path,
device=device,

View File

@@ -1,3 +1,42 @@
from typing import Optional
import huggingface_hub
from tqdm.auto import tqdm
def download_model(
size: str,
output_dir: Optional[str] = None,
show_progress_bars: bool = True,
):
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
The model is downloaded from https://huggingface.co/guillaumekln.
Args:
size: Size of the model to download (tiny, tiny.en, base, base.en, small, small.en,
medium, medium.en, or large-v2).
output_dir: Directory where the model should be saved. If not set, the model is saved in
the standard Hugging Face cache directory.
show_progress_bars: Show the tqdm progress bars during the download.
Returns:
The path to the downloaded model.
"""
repo_id = "guillaumekln/faster-whisper-%s" % size
kwargs = {}
if output_dir is not None:
kwargs["local_dir"] = output_dir
kwargs["local_dir_use_symlinks"] = False
if not show_progress_bars:
kwargs["tqdm_class"] = disabled_tqdm
return huggingface_hub.snapshot_download(repo_id, **kwargs)
def format_timestamp(
seconds: float,
always_include_hours: bool = False,
@@ -19,3 +58,9 @@ def format_timestamp(
return (
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
)
class disabled_tqdm(tqdm):
def __init__(self, *args, **kwargs):
kwargs["disable"] = True
super().__init__(*args, **kwargs)