mirror of
https://github.com/SYSTRAN/faster-whisper.git
synced 2026-01-08 13:14:00 -05:00
* Adds new VAD parameters Adds new VAD parameters: min_silence_at_max_speech: Minimum silence duration in ms which is used to avoid abrupt cuts when max_speech_duration_s is reached. use_max_poss_sil_at_max_speech: Whether to use the maximum possible silence at max_speech_duration_s or not. If not, the last silence is used. * Style * Update doc * change min_speech_duration_ms (0 -> 250) * Change min_speech_duration_ms to zero Set minimum speech duration to zero for flexibility. --------- Co-authored-by: Mahmoud Ashraf <hassouna97.ma@gmail.com>
386 lines
14 KiB
Python
386 lines
14 KiB
Python
import bisect
|
|
import functools
|
|
import os
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
|
|
from faster_whisper.utils import get_assets_path
|
|
|
|
|
|
# The code below is adapted from https://github.com/snakers4/silero-vad.
|
|
@dataclass
|
|
class VadOptions:
|
|
"""VAD options.
|
|
|
|
Attributes:
|
|
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk,
|
|
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
|
|
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
|
neg_threshold: Silence threshold for determining the end of speech. If a probability is lower
|
|
than neg_threshold, it is always considered silence. Values higher than neg_threshold
|
|
are only considered speech if the previous sample was classified as speech; otherwise,
|
|
they are treated as silence. This parameter helps refine the detection of speech
|
|
transitions, ensuring smoother segment boundaries.
|
|
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out.
|
|
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer
|
|
than max_speech_duration_s will be split at the timestamp of the last silence that
|
|
lasts more than min_silence_at_max_speech (if any), to prevent aggressive cutting.
|
|
Otherwise, they will be split aggressively just before max_speech_duration_s.
|
|
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
|
|
before separating it
|
|
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
|
|
min_silence_at_max_speech: Minimum silence duration in ms which is used to avoid abrupt cuts
|
|
when max_speech_duration_s is reached.
|
|
use_max_poss_sil_at_max_speech: Whether to use the maximum possible silence at
|
|
max_speech_duration_s or not. If not, the last silence is used.
|
|
"""
|
|
|
|
threshold: float = 0.5
|
|
neg_threshold: float = None
|
|
min_speech_duration_ms: int = 0
|
|
max_speech_duration_s: float = float("inf")
|
|
min_silence_duration_ms: int = 2000
|
|
speech_pad_ms: int = 400
|
|
min_silence_at_max_speech: int = 98
|
|
use_max_poss_sil_at_max_speech: bool = True
|
|
|
|
|
|
def get_speech_timestamps(
|
|
audio: np.ndarray,
|
|
vad_options: Optional[VadOptions] = None,
|
|
sampling_rate: int = 16000,
|
|
**kwargs,
|
|
) -> List[dict]:
|
|
"""This method is used for splitting long audios into speech chunks using silero VAD.
|
|
|
|
Args:
|
|
audio: One dimensional float array.
|
|
vad_options: Options for VAD processing.
|
|
sampling rate: Sampling rate of the audio.
|
|
kwargs: VAD options passed as keyword arguments for backward compatibility.
|
|
|
|
Returns:
|
|
List of dicts containing begin and end samples of each speech chunk.
|
|
"""
|
|
if vad_options is None:
|
|
vad_options = VadOptions(**kwargs)
|
|
|
|
threshold = vad_options.threshold
|
|
neg_threshold = vad_options.neg_threshold
|
|
min_speech_duration_ms = vad_options.min_speech_duration_ms
|
|
max_speech_duration_s = vad_options.max_speech_duration_s
|
|
min_silence_duration_ms = vad_options.min_silence_duration_ms
|
|
window_size_samples = 512
|
|
speech_pad_ms = vad_options.speech_pad_ms
|
|
min_silence_at_max_speech = vad_options.min_silence_at_max_speech
|
|
use_max_poss_sil_at_max_speech = vad_options.use_max_poss_sil_at_max_speech
|
|
|
|
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
|
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
|
max_speech_samples = (
|
|
sampling_rate * max_speech_duration_s
|
|
- window_size_samples
|
|
- 2 * speech_pad_samples
|
|
)
|
|
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
|
min_silence_samples_at_max_speech = sampling_rate * min_silence_at_max_speech / 1000
|
|
|
|
audio_length_samples = len(audio)
|
|
|
|
model = get_vad_model()
|
|
|
|
padded_audio = np.pad(
|
|
audio, (0, window_size_samples - audio.shape[0] % window_size_samples)
|
|
)
|
|
speech_probs = model(padded_audio)
|
|
|
|
triggered = False
|
|
speeches = []
|
|
current_speech = {}
|
|
possible_ends = []
|
|
|
|
if neg_threshold is None:
|
|
neg_threshold = max(threshold - 0.15, 0.01)
|
|
|
|
# to save potential segment end (and tolerate some silence)
|
|
temp_end = 0
|
|
# to save potential segment limits in case of maximum segment size reached
|
|
prev_end = next_start = 0
|
|
|
|
for i, speech_prob in enumerate(speech_probs):
|
|
cur_sample = window_size_samples * i
|
|
|
|
if (speech_prob >= threshold) and temp_end:
|
|
sil_dur = cur_sample - temp_end
|
|
if sil_dur > min_silence_samples_at_max_speech:
|
|
possible_ends.append((temp_end, sil_dur))
|
|
temp_end = 0
|
|
if next_start < prev_end:
|
|
next_start = cur_sample
|
|
|
|
if (speech_prob >= threshold) and not triggered:
|
|
triggered = True
|
|
current_speech["start"] = cur_sample
|
|
continue
|
|
|
|
if triggered and (cur_sample - current_speech["start"] > max_speech_samples):
|
|
if use_max_poss_sil_at_max_speech and possible_ends:
|
|
prev_end, dur = max(possible_ends, key=lambda x: x[1])
|
|
current_speech["end"] = prev_end
|
|
speeches.append(current_speech)
|
|
current_speech = {}
|
|
next_start = prev_end + dur
|
|
|
|
if next_start < prev_end + cur_sample:
|
|
current_speech["start"] = next_start
|
|
else:
|
|
triggered = False
|
|
prev_end = next_start = temp_end = 0
|
|
possible_ends = []
|
|
else:
|
|
if prev_end:
|
|
current_speech["end"] = prev_end
|
|
speeches.append(current_speech)
|
|
current_speech = {}
|
|
if next_start < prev_end:
|
|
triggered = False
|
|
else:
|
|
current_speech["start"] = next_start
|
|
prev_end = next_start = temp_end = 0
|
|
possible_ends = []
|
|
else:
|
|
current_speech["end"] = cur_sample
|
|
speeches.append(current_speech)
|
|
current_speech = {}
|
|
prev_end = next_start = temp_end = 0
|
|
triggered = False
|
|
possible_ends = []
|
|
continue
|
|
|
|
if (speech_prob < neg_threshold) and triggered:
|
|
if not temp_end:
|
|
temp_end = cur_sample
|
|
sil_dur_now = cur_sample - temp_end
|
|
|
|
if (
|
|
not use_max_poss_sil_at_max_speech
|
|
and sil_dur_now > min_silence_samples_at_max_speech
|
|
):
|
|
prev_end = temp_end
|
|
|
|
if sil_dur_now < min_silence_samples:
|
|
continue
|
|
else:
|
|
current_speech["end"] = temp_end
|
|
if (
|
|
current_speech["end"] - current_speech["start"]
|
|
) > min_speech_samples:
|
|
speeches.append(current_speech)
|
|
current_speech = {}
|
|
prev_end = next_start = temp_end = 0
|
|
triggered = False
|
|
possible_ends = []
|
|
continue
|
|
|
|
if (
|
|
current_speech
|
|
and (audio_length_samples - current_speech["start"]) > min_speech_samples
|
|
):
|
|
current_speech["end"] = audio_length_samples
|
|
speeches.append(current_speech)
|
|
|
|
for i, speech in enumerate(speeches):
|
|
if i == 0:
|
|
speech["start"] = int(max(0, speech["start"] - speech_pad_samples))
|
|
if i != len(speeches) - 1:
|
|
silence_duration = speeches[i + 1]["start"] - speech["end"]
|
|
if silence_duration < 2 * speech_pad_samples:
|
|
speech["end"] += int(silence_duration // 2)
|
|
speeches[i + 1]["start"] = int(
|
|
max(0, speeches[i + 1]["start"] - silence_duration // 2)
|
|
)
|
|
else:
|
|
speech["end"] = int(
|
|
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
|
)
|
|
speeches[i + 1]["start"] = int(
|
|
max(0, speeches[i + 1]["start"] - speech_pad_samples)
|
|
)
|
|
else:
|
|
speech["end"] = int(
|
|
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
|
)
|
|
|
|
return speeches
|
|
|
|
|
|
def collect_chunks(
|
|
audio: np.ndarray,
|
|
chunks: List[dict],
|
|
sampling_rate: int = 16000,
|
|
max_duration: float = float("inf"),
|
|
) -> Tuple[List[np.ndarray], List[Dict[str, float]]]:
|
|
"""This function merges the chunks of audio into chunks of max_duration (s) length."""
|
|
if not chunks:
|
|
chunk_metadata = {
|
|
"offset": 0,
|
|
"duration": 0,
|
|
"segments": [],
|
|
}
|
|
return [np.array([], dtype=np.float32)], [chunk_metadata]
|
|
|
|
audio_chunks = []
|
|
chunks_metadata = []
|
|
|
|
current_segments = []
|
|
current_duration = 0
|
|
total_duration = 0
|
|
current_audio = np.array([], dtype=np.float32)
|
|
|
|
for chunk in chunks:
|
|
if (
|
|
current_duration + chunk["end"] - chunk["start"]
|
|
> max_duration * sampling_rate
|
|
):
|
|
audio_chunks.append(current_audio)
|
|
chunk_metadata = {
|
|
"offset": total_duration / sampling_rate,
|
|
"duration": current_duration / sampling_rate,
|
|
"segments": current_segments,
|
|
}
|
|
total_duration += current_duration
|
|
chunks_metadata.append(chunk_metadata)
|
|
|
|
current_segments = []
|
|
|
|
current_audio = audio[chunk["start"] : chunk["end"]]
|
|
current_duration = chunk["end"] - chunk["start"]
|
|
else:
|
|
current_segments.append(chunk)
|
|
current_audio = np.concatenate(
|
|
(current_audio, audio[chunk["start"] : chunk["end"]])
|
|
)
|
|
|
|
current_duration += chunk["end"] - chunk["start"]
|
|
|
|
audio_chunks.append(current_audio)
|
|
|
|
chunk_metadata = {
|
|
"offset": total_duration / sampling_rate,
|
|
"duration": current_duration / sampling_rate,
|
|
"segments": current_segments,
|
|
}
|
|
chunks_metadata.append(chunk_metadata)
|
|
return audio_chunks, chunks_metadata
|
|
|
|
|
|
class SpeechTimestampsMap:
|
|
"""Helper class to restore original speech timestamps."""
|
|
|
|
def __init__(self, chunks: List[dict], sampling_rate: int, time_precision: int = 2):
|
|
self.sampling_rate = sampling_rate
|
|
self.time_precision = time_precision
|
|
self.chunk_end_sample = []
|
|
self.total_silence_before = []
|
|
|
|
previous_end = 0
|
|
silent_samples = 0
|
|
|
|
for chunk in chunks:
|
|
silent_samples += chunk["start"] - previous_end
|
|
previous_end = chunk["end"]
|
|
|
|
self.chunk_end_sample.append(chunk["end"] - silent_samples)
|
|
self.total_silence_before.append(silent_samples / sampling_rate)
|
|
|
|
def get_original_time(
|
|
self,
|
|
time: float,
|
|
chunk_index: Optional[int] = None,
|
|
is_end: bool = False,
|
|
) -> float:
|
|
if chunk_index is None:
|
|
chunk_index = self.get_chunk_index(time, is_end)
|
|
|
|
total_silence_before = self.total_silence_before[chunk_index]
|
|
return round(total_silence_before + time, self.time_precision)
|
|
|
|
def get_chunk_index(self, time: float, is_end: bool = False) -> int:
|
|
sample = int(time * self.sampling_rate)
|
|
if sample in self.chunk_end_sample and is_end:
|
|
return self.chunk_end_sample.index(sample)
|
|
|
|
return min(
|
|
bisect.bisect(self.chunk_end_sample, sample),
|
|
len(self.chunk_end_sample) - 1,
|
|
)
|
|
|
|
|
|
@functools.lru_cache
|
|
def get_vad_model():
|
|
"""Returns the VAD model instance."""
|
|
path = os.path.join(get_assets_path(), "silero_vad_v6.onnx")
|
|
return SileroVADModel(path)
|
|
|
|
|
|
class SileroVADModel:
|
|
def __init__(self, path):
|
|
try:
|
|
import onnxruntime
|
|
except ImportError as e:
|
|
raise RuntimeError(
|
|
"Applying the VAD filter requires the onnxruntime package"
|
|
) from e
|
|
|
|
opts = onnxruntime.SessionOptions()
|
|
opts.inter_op_num_threads = 1
|
|
opts.intra_op_num_threads = 1
|
|
opts.enable_cpu_mem_arena = False
|
|
opts.log_severity_level = 4
|
|
|
|
self.session = onnxruntime.InferenceSession(
|
|
path,
|
|
providers=["CPUExecutionProvider"],
|
|
sess_options=opts,
|
|
)
|
|
|
|
def __call__(
|
|
self, audio: np.ndarray, num_samples: int = 512, context_size_samples: int = 64
|
|
):
|
|
assert audio.ndim == 1, "Input should be a 1D array"
|
|
assert (
|
|
audio.shape[0] % num_samples == 0
|
|
), "Input size should be a multiple of num_samples"
|
|
|
|
h = np.zeros((1, 1, 128), dtype="float32")
|
|
c = np.zeros((1, 1, 128), dtype="float32")
|
|
context = np.zeros(
|
|
(1, context_size_samples),
|
|
dtype="float32",
|
|
)
|
|
|
|
batched_audio = audio.reshape(-1, num_samples)
|
|
context = batched_audio[..., -context_size_samples:]
|
|
context[-1] = 0
|
|
context = np.roll(context, 1, 0)
|
|
batched_audio = np.concatenate([context, batched_audio], 1)
|
|
|
|
batched_audio = batched_audio.reshape(-1, num_samples + context_size_samples)
|
|
|
|
encoder_batch_size = 10000
|
|
num_segments = batched_audio.shape[0]
|
|
outputs = []
|
|
for i in range(0, num_segments, encoder_batch_size):
|
|
output, h, c = self.session.run(
|
|
None,
|
|
{"input": batched_audio[i : i + encoder_batch_size], "h": h, "c": c},
|
|
)
|
|
outputs.append(output)
|
|
|
|
out = np.concatenate(outputs, axis=0)
|
|
|
|
return out
|