Files
faster-whisper/tests/test_transcribe.py
Mahmoud Ashraf bcd8ce0fc7 refactor multilingual option (#1148)
* Added test for `multilingual` option with english-german audio
* removed `output_language` argument as it is redundant, you can get the same functionality with `task="translate"`
* use the correct `encoder_output` for language detection in sequential transcription
* enabled `multilingual` functionality for batched inference
2024-11-20 00:14:59 +03:00

322 lines
9.1 KiB
Python

import os
import numpy as np
from faster_whisper import BatchedInferencePipeline, WhisperModel, decode_audio
from faster_whisper.tokenizer import Tokenizer
from faster_whisper.transcribe import get_suppressed_tokens
def test_supported_languages():
model = WhisperModel("tiny.en")
assert model.supported_languages == ["en"]
def test_transcribe(jfk_path):
model = WhisperModel("tiny")
segments, info = model.transcribe(jfk_path, word_timestamps=True)
assert info.all_language_probs is not None
assert info.language == "en"
assert info.language_probability > 0.9
assert info.duration == 11
# Get top language info from all results, which should match the
# already existing metadata
top_lang, top_lang_score = info.all_language_probs[0]
assert info.language == top_lang
assert abs(info.language_probability - top_lang_score) < 1e-16
segments = list(segments)
assert len(segments) == 1
segment = segments[0]
assert segment.text == (
" And so my fellow Americans, ask not what your country can do for you, "
"ask what you can do for your country."
)
assert segment.text == "".join(word.word for word in segment.words)
assert segment.start == segment.words[0].start
assert segment.end == segment.words[-1].end
batched_model = BatchedInferencePipeline(model=model)
result, info = batched_model.transcribe(
jfk_path, word_timestamps=True, vad_filter=False
)
assert info.language == "en"
assert info.language_probability > 0.7
segments = []
for segment in result:
segments.append(
{"start": segment.start, "end": segment.end, "text": segment.text}
)
assert len(segments) == 1
assert segment.text == (
" And so my fellow Americans ask not what your country can do for you, "
"ask what you can do for your country."
)
def test_batched_transcribe(physcisworks_path):
model = WhisperModel("tiny")
batched_model = BatchedInferencePipeline(model=model)
result, info = batched_model.transcribe(physcisworks_path, batch_size=16)
assert info.language == "en"
assert info.language_probability > 0.7
segments = []
for segment in result:
segments.append(
{"start": segment.start, "end": segment.end, "text": segment.text}
)
# number of near 30 sec segments
assert len(segments) == 7
result, info = batched_model.transcribe(
physcisworks_path,
batch_size=16,
without_timestamps=False,
word_timestamps=True,
)
segments = []
for segment in result:
assert segment.words is not None
segments.append(
{"start": segment.start, "end": segment.end, "text": segment.text}
)
assert len(segments) > 7
def test_empty_audio():
audio = np.asarray([], dtype="float32")
model = WhisperModel("tiny")
pipeline = BatchedInferencePipeline(model=model)
assert list(model.transcribe(audio)[0]) == []
assert list(pipeline.transcribe(audio)[0]) == []
model.detect_language(audio)
def test_prefix_with_timestamps(jfk_path):
model = WhisperModel("tiny")
segments, _ = model.transcribe(jfk_path, prefix="And so my fellow Americans")
segments = list(segments)
assert len(segments) == 1
segment = segments[0]
assert segment.text == (
" And so my fellow Americans, ask not what your country can do for you, "
"ask what you can do for your country."
)
assert segment.start == 0
assert 10 < segment.end <= 11
def test_vad(jfk_path):
model = WhisperModel("tiny")
segments, info = model.transcribe(
jfk_path,
vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=500, speech_pad_ms=200),
)
segments = list(segments)
assert len(segments) == 1
segment = segments[0]
assert segment.text == (
" And so my fellow Americans ask not what your country can do for you, "
"ask what you can do for your country."
)
assert 0 < segment.start < 1
assert 10 < segment.end < 11
assert info.vad_options.min_silence_duration_ms == 500
assert info.vad_options.speech_pad_ms == 200
def test_stereo_diarization(data_dir):
model = WhisperModel("tiny")
audio_path = os.path.join(data_dir, "stereo_diarization.wav")
left, right = decode_audio(audio_path, split_stereo=True)
segments, _ = model.transcribe(left)
transcription = "".join(segment.text for segment in segments).strip()
assert transcription == (
"He began a confused complaint against the wizard, "
"who had vanished behind the curtain on the left."
)
segments, _ = model.transcribe(right)
transcription = "".join(segment.text for segment in segments).strip()
assert transcription == "The horizon seems extremely distant."
def test_multilingual_transcription(data_dir):
model = WhisperModel("tiny")
pipeline = BatchedInferencePipeline(model)
audio_path = os.path.join(data_dir, "multilingual.mp3")
audio = decode_audio(audio_path)
segments, info = model.transcribe(
audio,
multilingual=True,
without_timestamps=True,
condition_on_previous_text=False,
)
segments = list(segments)
assert (
segments[0].text
== " Permission is hereby granted, free of charge, to any person obtaining a copy of the"
" software and associated documentation files to deal in the software without restriction,"
" including without limitation the rights to use, copy, modify, merge, publish, distribute"
", sublicence, and or cell copies of the software, and to permit persons to whom the "
"software is furnished to do so, subject to the following conditions. The above copyright"
" notice and this permission notice, shall be included in all copies or substantial "
"portions of the software."
)
assert (
segments[1].text
== " Jedem, der dieses Software und die dazu gehöregen Dokumentationsdatein erhält, wird "
"hiermit unengeltlich die Genehmigung erteilt, wird der Software und eingeschränkt zu "
"verfahren. Dies umfasst insbesondere das Recht, die Software zu verwenden, zu "
"vervielfältigen, zu modifizieren, zu Samenzofügen, zu veröffentlichen, zu verteilen, "
"unterzulizenzieren und oder kopieren der Software zu verkaufen und diese Rechte "
"unterfolgen den Bedingungen anderen zu übertragen."
)
segments, info = pipeline.transcribe(audio, multilingual=True)
segments = list(segments)
assert (
segments[0].text
== " Permission is hereby granted, free of charge, to any person obtaining a copy of the"
" software and associated documentation files to deal in the software without restriction,"
" including without limitation the rights to use, copy, modify, merge, publish, distribute"
", sublicence, and or cell copies of the software, and to permit persons to whom the "
"software is furnished to do so, subject to the following conditions. The above copyright"
" notice and this permission notice, shall be included in all copies or substantial "
"portions of the software."
)
assert (
"Dokumentationsdatein erhält, wird hiermit unengeltlich die Genehmigung erteilt,"
" wird der Software und eingeschränkt zu verfahren. Dies umfasst insbesondere das Recht,"
" die Software zu verwenden, zu vervielfältigen, zu modifizieren"
in segments[1].text
)
def test_suppressed_tokens_minus_1():
model = WhisperModel("tiny.en")
tokenizer = Tokenizer(model.hf_tokenizer, False)
tokens = get_suppressed_tokens(tokenizer, [-1])
assert tokens == (
1,
2,
7,
8,
9,
10,
14,
25,
26,
27,
28,
29,
31,
58,
59,
60,
61,
62,
63,
90,
91,
92,
93,
357,
366,
438,
532,
685,
705,
796,
930,
1058,
1220,
1267,
1279,
1303,
1343,
1377,
1391,
1635,
1782,
1875,
2162,
2361,
2488,
3467,
4008,
4211,
4600,
4808,
5299,
5855,
6329,
7203,
9609,
9959,
10563,
10786,
11420,
11709,
11907,
13163,
13697,
13700,
14808,
15306,
16410,
16791,
17992,
19203,
19510,
20724,
22305,
22935,
27007,
30109,
30420,
33409,
34949,
40283,
40493,
40549,
47282,
49146,
50257,
50357,
50358,
50359,
50360,
)
def test_suppressed_tokens_minus_value():
model = WhisperModel("tiny.en")
tokenizer = Tokenizer(model.hf_tokenizer, False)
tokens = get_suppressed_tokens(tokenizer, [13])
assert tokens == (13, 50257, 50357, 50358, 50359, 50360)