feat(tools/bigquery-analyze-contribution): Add analyze contribution tool (#1223)

This tool creates a contribution analysis model and use ml.get_insights
to get the results.

---------

Co-authored-by: Yuan Teoh <45984206+Yuan325@users.noreply.github.com>
Co-authored-by: Averi Kitsch <akitsch@google.com>
This commit is contained in:
Haoming Chen
2025-09-10 14:53:56 -07:00
committed by GitHub
parent 0cd3f16f87
commit 81d239b053
7 changed files with 612 additions and 2 deletions

View File

@@ -43,6 +43,7 @@ import (
// Import tool packages for side effect of registration
_ "github.com/googleapis/genai-toolbox/internal/tools/alloydbainl"
_ "github.com/googleapis/genai-toolbox/internal/tools/bigquery/bigqueryanalyzecontribution"
_ "github.com/googleapis/genai-toolbox/internal/tools/bigquery/bigqueryconversationalanalytics"
_ "github.com/googleapis/genai-toolbox/internal/tools/bigquery/bigqueryexecutesql"
_ "github.com/googleapis/genai-toolbox/internal/tools/bigquery/bigqueryforecast"

View File

@@ -1359,7 +1359,7 @@ func TestPrebuiltTools(t *testing.T) {
wantToolset: server.ToolsetConfigs{
"bigquery-database-tools": tools.ToolsetConfig{
Name: "bigquery-database-tools",
ToolNames: []string{"ask_data_insights", "execute_sql", "forecast", "get_dataset_info", "get_table_info", "list_dataset_ids", "list_table_ids"},
ToolNames: []string{"analyze_contribution", "ask_data_insights", "execute_sql", "forecast", "get_dataset_info", "get_table_info", "list_dataset_ids", "list_table_ids"},
},
},
},

View File

@@ -0,0 +1,52 @@
---
title: "bigquery-analyze-contribution"
type: docs
weight: 1
description: >
A "bigquery-analyze-contribution" tool performs contribution analysis in BigQuery.
aliases:
- /resources/tools/bigquery-analyze-contribution
---
## About
A `bigquery-analyze-contribution` tool performs contribution analysis in BigQuery by creating a temporary `CONTRIBUTION_ANALYSIS` model and then querying it with `ML.GET_INSIGHTS` to find top contributors for a given metric.
It's compatible with the following sources:
- [bigquery](../../sources/bigquery.md)
`bigquery-analyze-contribution` takes the following parameters:
- **input_data** (string, required): The data that contain the test and control data to analyze. This can be a fully qualified BigQuery table ID (e.g., `my-project.my_dataset.my_table`) or a SQL query that returns the data.
- **contribution_metric** (string, required): The name of the column that contains the metric to analyze. This can be SUM(metric_column_name), SUM(numerator_metric_column_name)/SUM(denominator_metric_column_name) or SUM(metric_sum_column_name)/COUNT(DISTINCT categorical_column_name) depending the type of metric to analyze.
- **is_test_col** (string, required): The name of the column that identifies whether a row is in the test or control group. The column must contain boolean values.
- **dimension_id_cols** (array of strings, optional): An array of column names that uniquely identify each dimension.
- **top_k_insights_by_apriori_support** (integer, optional): The number of top insights to return, ranked by apriori support. Default to '30'.
- **pruning_method** (string, optional): The method to use for pruning redundant insights. Can be `'NO_PRUNING'` or `'PRUNE_REDUNDANT_INSIGHTS'`. Defaults to `'PRUNE_REDUNDANT_INSIGHTS'`.
## Example
```yaml
tools:
contribution_analyzer:
kind: bigquery-analyze-contribution
source: my-bigquery-source
description: Use this tool to run contribution analysis on a dataset in BigQuery.
```
## Sample Prompt
You can prepare a sample table following https://cloud.google.com/bigquery/docs/get-contribution-analysis-insights.
And use the following sample prompts to call this tool:
- What drives the changes in sales in the table `bqml_tutorial.iowa_liquor_sales_sum_data`? Use the project id myproject.
- Analyze the contribution for the `total_sales` metric in the table `bqml_tutorial.iowa_liquor_sales_sum_data`. The test group is identified by the `is_test` column. The dimensions are `store_name`, `city`, `vendor_name`, `category_name` and `item_description`.
## Reference
| **field** | **type** | **required** | **description** |
|-------------|:--------:|:------------:|------------------------------------------------------------|
| kind | string | true | Must be "bigquery-analyze-contribution". |
| source | string | true | Name of the source the tool should execute on. |
| description | string | true | Description of the tool that is passed to the LLM. |

View File

@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
sources:
bigquery-source:
kind: "bigquery"
@@ -18,6 +19,11 @@ sources:
location: ${BIGQUERY_LOCATION:}
tools:
analyze_contribution:
kind: bigquery-analyze-contribution
source: bigquery-source
description: Use this tool to analyze the contribution about changes to key metrics in multi-dimensional data.
ask_data_insights:
kind: bigquery-conversational-analytics
source: bigquery-source
@@ -58,6 +64,7 @@ tools:
toolsets:
bigquery-database-tools:
- analyze_contribution
- ask_data_insights
- execute_sql
- forecast

View File

@@ -0,0 +1,307 @@
// Copyright 2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package bigqueryanalyzecontribution
import (
"context"
"fmt"
"strings"
bigqueryapi "cloud.google.com/go/bigquery"
yaml "github.com/goccy/go-yaml"
"github.com/google/uuid"
"github.com/googleapis/genai-toolbox/internal/sources"
bigqueryds "github.com/googleapis/genai-toolbox/internal/sources/bigquery"
"github.com/googleapis/genai-toolbox/internal/tools"
bigqueryrestapi "google.golang.org/api/bigquery/v2"
"google.golang.org/api/iterator"
)
const kind string = "bigquery-analyze-contribution"
func init() {
if !tools.Register(kind, newConfig) {
panic(fmt.Sprintf("tool kind %q already registered", kind))
}
}
func newConfig(ctx context.Context, name string, decoder *yaml.Decoder) (tools.ToolConfig, error) {
actual := Config{Name: name}
if err := decoder.DecodeContext(ctx, &actual); err != nil {
return nil, err
}
return actual, nil
}
type compatibleSource interface {
BigQueryClient() *bigqueryapi.Client
BigQueryRestService() *bigqueryrestapi.Service
BigQueryClientCreator() bigqueryds.BigqueryClientCreator
UseClientAuthorization() bool
}
// validate compatible sources are still compatible
var _ compatibleSource = &bigqueryds.Source{}
var compatibleSources = [...]string{bigqueryds.SourceKind}
type Config struct {
Name string `yaml:"name" validate:"required"`
Kind string `yaml:"kind" validate:"required"`
Source string `yaml:"source" validate:"required"`
Description string `yaml:"description" validate:"required"`
AuthRequired []string `yaml:"authRequired"`
}
// validate interface
var _ tools.ToolConfig = Config{}
func (cfg Config) ToolConfigKind() string {
return kind
}
func (cfg Config) Initialize(srcs map[string]sources.Source) (tools.Tool, error) {
// verify source exists
rawS, ok := srcs[cfg.Source]
if !ok {
return nil, fmt.Errorf("no source named %q configured", cfg.Source)
}
// verify the source is compatible
s, ok := rawS.(compatibleSource)
if !ok {
return nil, fmt.Errorf("invalid source for %q tool: source kind must be one of %q", kind, compatibleSources)
}
inputDataParameter := tools.NewStringParameter("input_data",
"The data that contain the test and control data to analyze. Can be a fully qualified BigQuery table ID or a SQL query.")
contributionMetricParameter := tools.NewStringParameter("contribution_metric",
`The name of the column that contains the metric to analyze.
Provides the expression to use to calculate the metric you are analyzing.
To calculate a summable metric, the expression must be in the form SUM(metric_column_name),
where metric_column_name is a numeric data type.
To calculate a summable ratio metric, the expression must be in the form
SUM(numerator_metric_column_name)/SUM(denominator_metric_column_name),
where numerator_metric_column_name and denominator_metric_column_name are numeric data types.
To calculate a summable by category metric, the expression must be in the form
SUM(metric_sum_column_name)/COUNT(DISTINCT categorical_column_name). The summed column must be a numeric data type.
The categorical column must have type BOOL, DATE, DATETIME, TIME, TIMESTAMP, STRING, or INT64.`)
isTestColParameter := tools.NewStringParameter("is_test_col",
"The name of the column that identifies whether a row is in the test or control group.")
dimensionIDColsParameter := tools.NewArrayParameterWithRequired("dimension_id_cols",
"An array of column names that uniquely identify each dimension.", false, tools.NewStringParameter("dimension_id_col", "A dimension column name."))
topKInsightsParameter := tools.NewIntParameterWithDefault("top_k_insights_by_apriori_support", 30,
"The number of top insights to return, ranked by apriori support.")
pruningMethodParameter := tools.NewStringParameterWithDefault("pruning_method", "PRUNE_REDUNDANT_INSIGHTS",
"The method to use for pruning redundant insights. Can be 'NO_PRUNING' or 'PRUNE_REDUNDANT_INSIGHTS'.")
parameters := tools.Parameters{
inputDataParameter,
contributionMetricParameter,
isTestColParameter,
dimensionIDColsParameter,
topKInsightsParameter,
pruningMethodParameter,
}
mcpManifest := tools.McpManifest{
Name: cfg.Name,
Description: cfg.Description,
InputSchema: parameters.McpManifest(),
}
// finish tool setup
t := Tool{
Name: cfg.Name,
Kind: kind,
Parameters: parameters,
AuthRequired: cfg.AuthRequired,
UseClientOAuth: s.UseClientAuthorization(),
ClientCreator: s.BigQueryClientCreator(),
Client: s.BigQueryClient(),
RestService: s.BigQueryRestService(),
manifest: tools.Manifest{Description: cfg.Description, Parameters: parameters.Manifest(), AuthRequired: cfg.AuthRequired},
mcpManifest: mcpManifest,
}
return t, nil
}
// validate interface
var _ tools.Tool = Tool{}
type Tool struct {
Name string `yaml:"name"`
Kind string `yaml:"kind"`
AuthRequired []string `yaml:"authRequired"`
UseClientOAuth bool `yaml:"useClientOAuth"`
Parameters tools.Parameters `yaml:"parameters"`
Client *bigqueryapi.Client
RestService *bigqueryrestapi.Service
ClientCreator bigqueryds.BigqueryClientCreator
manifest tools.Manifest
mcpManifest tools.McpManifest
}
// Invoke runs the contribution analysis.
func (t Tool) Invoke(ctx context.Context, params tools.ParamValues, accessToken tools.AccessToken) (any, error) {
paramsMap := params.AsMap()
inputData, ok := paramsMap["input_data"].(string)
if !ok {
return nil, fmt.Errorf("unable to cast input_data parameter %s", paramsMap["input_data"])
}
modelID := fmt.Sprintf("contribution_analysis_model_%s", strings.ReplaceAll(uuid.New().String(), "-", ""))
var options []string
options = append(options, "MODEL_TYPE = 'CONTRIBUTION_ANALYSIS'")
options = append(options, fmt.Sprintf("CONTRIBUTION_METRIC = '%s'", paramsMap["contribution_metric"]))
options = append(options, fmt.Sprintf("IS_TEST_COL = '%s'", paramsMap["is_test_col"]))
if val, ok := paramsMap["dimension_id_cols"]; ok {
if cols, ok := val.([]any); ok {
var strCols []string
for _, c := range cols {
strCols = append(strCols, fmt.Sprintf("'%s'", c))
}
options = append(options, fmt.Sprintf("DIMENSION_ID_COLS = [%s]", strings.Join(strCols, ", ")))
} else {
return nil, fmt.Errorf("unable to cast dimension_id_cols parameter %s", paramsMap["dimension_id_cols"])
}
}
if val, ok := paramsMap["top_k_insights_by_apriori_support"]; ok {
options = append(options, fmt.Sprintf("TOP_K_INSIGHTS_BY_APRIORI_SUPPORT = %v", val))
}
if val, ok := paramsMap["pruning_method"].(string); ok {
upperVal := strings.ToUpper(val)
if upperVal != "NO_PRUNING" && upperVal != "PRUNE_REDUNDANT_INSIGHTS" {
return nil, fmt.Errorf("invalid pruning_method: %s", val)
}
options = append(options, fmt.Sprintf("PRUNING_METHOD = '%s'", upperVal))
}
var inputDataSource string
trimmedUpperInputData := strings.TrimSpace(strings.ToUpper(inputData))
if strings.HasPrefix(trimmedUpperInputData, "SELECT") || strings.HasPrefix(trimmedUpperInputData, "WITH") {
inputDataSource = fmt.Sprintf("(%s)", inputData)
} else {
inputDataSource = fmt.Sprintf("SELECT * FROM `%s`", inputData)
}
// Use temp model to skip the clean up at the end. To use TEMP MODEL, queries have to be
// in the same BigQuery session.
createModelSQL := fmt.Sprintf("CREATE TEMP MODEL %s OPTIONS(%s) AS %s",
modelID,
strings.Join(options, ", "),
inputDataSource,
)
bqClient := t.Client
var err error
// Initialize new client if using user OAuth token
if t.UseClientOAuth {
tokenStr, err := accessToken.ParseBearerToken()
if err != nil {
return nil, fmt.Errorf("error parsing access token: %w", err)
}
bqClient, _, err = t.ClientCreator(tokenStr, false)
if err != nil {
return nil, fmt.Errorf("error creating client from OAuth access token: %w", err)
}
}
createModelQuery := bqClient.Query(createModelSQL)
createModelQuery.CreateSession = true
createModelJob, err := createModelQuery.Run(ctx)
if err != nil {
return nil, fmt.Errorf("failed to start create model job: %w", err)
}
status, err := createModelJob.Wait(ctx)
if err != nil {
return nil, fmt.Errorf("failed to wait for create model job: %w", err)
}
if err := status.Err(); err != nil {
return nil, fmt.Errorf("create model job failed: %w", err)
}
if status.Statistics == nil || status.Statistics.SessionInfo == nil || status.Statistics.SessionInfo.SessionID == "" {
return nil, fmt.Errorf("failed to create a BigQuery session")
}
sessionID := status.Statistics.SessionInfo.SessionID
getInsightsSQL := fmt.Sprintf("SELECT * FROM ML.GET_INSIGHTS(MODEL %s)", modelID)
getInsightsQuery := bqClient.Query(getInsightsSQL)
getInsightsQuery.QueryConfig.ConnectionProperties = []*bigqueryapi.ConnectionProperty{
{Key: "session_id", Value: sessionID},
}
job, err := getInsightsQuery.Run(ctx)
if err != nil {
return nil, fmt.Errorf("failed to execute get insights query: %w", err)
}
it, err := job.Read(ctx)
if err != nil {
return nil, fmt.Errorf("unable to read query results: %w", err)
}
var out []any
for {
var row map[string]bigqueryapi.Value
err := it.Next(&row)
if err == iterator.Done {
break
}
if err != nil {
return nil, fmt.Errorf("failed to iterate through query results: %w", err)
}
vMap := make(map[string]any)
for key, value := range row {
vMap[key] = value
}
out = append(out, vMap)
}
if len(out) > 0 {
return out, nil
}
// This handles the standard case for a SELECT query that successfully
// executes but returns zero rows.
return "The query returned 0 rows.", nil
}
func (t Tool) ParseParams(data map[string]any, claims map[string]map[string]any) (tools.ParamValues, error) {
return tools.ParseParams(t.Parameters, data, claims)
}
func (t Tool) Manifest() tools.Manifest {
return t.manifest
}
func (t Tool) McpManifest() tools.McpManifest {
return t.mcpManifest
}
func (t Tool) Authorized(verifiedAuthServices []string) bool {
return tools.IsAuthorized(t.AuthRequired, verifiedAuthServices)
}
func (t Tool) RequiresClientAuthorization() bool {
return t.UseClientOAuth
}

View File

@@ -0,0 +1,72 @@
// Copyright 2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package bigqueryanalyzecontribution_test
import (
"testing"
yaml "github.com/goccy/go-yaml"
"github.com/google/go-cmp/cmp"
"github.com/googleapis/genai-toolbox/internal/server"
"github.com/googleapis/genai-toolbox/internal/testutils"
"github.com/googleapis/genai-toolbox/internal/tools/bigquery/bigqueryanalyzecontribution"
)
func TestParseFromYamlBigQueryAnalyzeContribution(t *testing.T) {
ctx, err := testutils.ContextWithNewLogger()
if err != nil {
t.Fatalf("unexpected error: %s", err)
}
tcs := []struct {
desc string
in string
want server.ToolConfigs
}{
{
desc: "basic example",
in: `
tools:
example_tool:
kind: bigquery-analyze-contribution
source: my-instance
description: some description
`,
want: server.ToolConfigs{
"example_tool": bigqueryanalyzecontribution.Config{
Name: "example_tool",
Kind: "bigquery-analyze-contribution",
Source: "my-instance",
Description: "some description",
AuthRequired: []string{},
},
},
},
}
for _, tc := range tcs {
t.Run(tc.desc, func(t *testing.T) {
got := struct {
Tools server.ToolConfigs `yaml:"tools"`
}{}
// Parse contents
err := yaml.UnmarshalContext(ctx, testutils.FormatYaml(tc.in), &got)
if err != nil {
t.Fatalf("unable to unmarshal: %s", err)
}
if diff := cmp.Diff(tc.want, got.Tools); diff != "" {
t.Fatalf("incorrect parse: diff %v", diff)
}
})
}
}

View File

@@ -113,6 +113,12 @@ func TestBigQueryToolEndpoints(t *testing.T) {
strings.ReplaceAll(uuid.New().String(), "-", ""),
)
tableNameAnalyzeContribution := fmt.Sprintf("`%s.%s.analyze_contribution_table_%s`",
BigqueryProject,
datasetName,
strings.ReplaceAll(uuid.New().String(), "-", ""),
)
// set up data for param tool
createParamTableStmt, insertParamTableStmt, paramToolStmt, idParamToolStmt, nameParamToolStmt, arrayToolStmt, paramTestParams := getBigQueryParamToolInfo(tableNameParam)
teardownTable1 := setupBigQueryTable(t, ctx, client, createParamTableStmt, insertParamTableStmt, datasetName, tableNameParam, paramTestParams)
@@ -133,6 +139,11 @@ func TestBigQueryToolEndpoints(t *testing.T) {
teardownTable4 := setupBigQueryTable(t, ctx, client, createForecastTableStmt, insertForecastTableStmt, datasetName, tableNameForecast, forecastTestParams)
defer teardownTable4(t)
// set up data for analyze contribution tool
createAnalyzeContributionTableStmt, insertAnalyzeContributionTableStmt, analyzeContributionTestParams := getBigQueryAnalyzeContributionToolInfo(tableNameAnalyzeContribution)
teardownTable5 := setupBigQueryTable(t, ctx, client, createAnalyzeContributionTableStmt, insertAnalyzeContributionTableStmt, datasetName, tableNameAnalyzeContribution, analyzeContributionTestParams)
defer teardownTable5(t)
// Write config into a file and pass it to command
toolsFile := tests.GetToolsConfig(sourceConfig, BigqueryToolKind, paramToolStmt, idParamToolStmt, nameParamToolStmt, arrayToolStmt, authToolStmt)
toolsFile = addClientAuthSourceConfig(t, toolsFile)
@@ -182,6 +193,7 @@ func TestBigQueryToolEndpoints(t *testing.T) {
runBigQueryExecuteSqlToolInvokeTest(t, select1Want, invokeParamWant, tableNameParam, ddlWant)
runBigQueryExecuteSqlToolInvokeDryRunTest(t, datasetName)
runBigQueryForecastToolInvokeTest(t, tableNameForecast)
runBigQueryAnalyzeContributionToolInvokeTest(t, tableNameAnalyzeContribution)
runBigQueryDataTypeTests(t)
runBigQueryListDatasetToolInvokeTest(t, datasetName)
runBigQueryGetDatasetInfoToolInvokeTest(t, datasetName, datasetInfoWant)
@@ -341,7 +353,7 @@ func getBigQueryForecastToolInfo(tableName string) (string, string, []bigqueryap
createStatement := fmt.Sprintf(`
CREATE TABLE IF NOT EXISTS %s (ts TIMESTAMP, data FLOAT64, id STRING);`, tableName)
insertStatement := fmt.Sprintf(`
INSERT INTO %s (ts, data, id) VALUES
INSERT INTO %s (ts, data, id) VALUES
(?, ?, ?), (?, ?, ?), (?, ?, ?),
(?, ?, ?), (?, ?, ?), (?, ?, ?);`, tableName)
params := []bigqueryapi.QueryParameter{
@@ -355,6 +367,26 @@ func getBigQueryForecastToolInfo(tableName string) (string, string, []bigqueryap
return createStatement, insertStatement, params
}
// getBigQueryAnalyzeContributionToolInfo returns statements and params for the analyze-contribution tool.
func getBigQueryAnalyzeContributionToolInfo(tableName string) (string, string, []bigqueryapi.QueryParameter) {
createStatement := fmt.Sprintf(`
CREATE TABLE IF NOT EXISTS %s (dim1 STRING, dim2 STRING, is_test BOOL, metric FLOAT64);`, tableName)
insertStatement := fmt.Sprintf(`
INSERT INTO %s (dim1, dim2, is_test, metric) VALUES
(?, ?, ?, ?), (?, ?, ?, ?), (?, ?, ?, ?), (?, ?, ?, ?);`, tableName)
params := []bigqueryapi.QueryParameter{
{Value: "a"}, {Value: "x"}, {Value: true}, {Value: 100.0},
{Value: "a"}, {Value: "x"}, {Value: false}, {Value: 110.0},
{Value: "a"}, {Value: "y"}, {Value: true}, {Value: 120.0},
{Value: "a"}, {Value: "y"}, {Value: false}, {Value: 100.0},
{Value: "b"}, {Value: "x"}, {Value: true}, {Value: 40.0},
{Value: "b"}, {Value: "x"}, {Value: false}, {Value: 100.0},
{Value: "b"}, {Value: "y"}, {Value: true}, {Value: 60.0},
{Value: "b"}, {Value: "y"}, {Value: false}, {Value: 60.0},
}
return createStatement, insertStatement, params
}
// getBigQueryTmplToolStatement returns statements for template parameter test cases for bigquery kind
func getBigQueryTmplToolStatement() (string, string) {
tmplSelectCombined := "SELECT * FROM {{.tableName}} WHERE id = ? ORDER BY id"
@@ -482,6 +514,24 @@ func addBigQueryPrebuiltToolsConfig(t *testing.T, config map[string]any) map[str
"source": "my-client-auth-source",
"description": "Tool to forecast time series data with auth.",
}
tools["my-analyze-contribution-tool"] = map[string]any{
"kind": "bigquery-analyze-contribution",
"source": "my-instance",
"description": "Tool to analyze contribution.",
}
tools["my-auth-analyze-contribution-tool"] = map[string]any{
"kind": "bigquery-analyze-contribution",
"source": "my-instance",
"description": "Tool to analyze contribution with auth.",
"authRequired": []string{
"my-google-auth",
},
}
tools["my-client-auth-analyze-contribution-tool"] = map[string]any{
"kind": "bigquery-analyze-contribution",
"source": "my-client-auth-source",
"description": "Tool to analyze contribution with auth.",
}
tools["my-list-dataset-ids-tool"] = map[string]any{
"kind": "bigquery-list-dataset-ids",
"source": "my-instance",
@@ -1051,6 +1101,127 @@ func runBigQueryForecastToolInvokeTest(t *testing.T, tableName string) {
}
}
func runBigQueryAnalyzeContributionToolInvokeTest(t *testing.T, tableName string) {
idToken, err := tests.GetGoogleIdToken(tests.ClientId)
if err != nil {
t.Fatalf("error getting Google ID token: %s", err)
}
// Get access token
accessToken, err := sources.GetIAMAccessToken(t.Context())
if err != nil {
t.Fatalf("error getting access token from ADC: %s", err)
}
accessToken = "Bearer " + accessToken
dataTable := strings.ReplaceAll(tableName, "`", "")
invokeTcs := []struct {
name string
api string
requestHeader map[string]string
requestBody io.Reader
want string
isErr bool
}{
{
name: "invoke my-analyze-contribution-tool without required params",
api: "http://127.0.0.1:5000/api/tool/my-analyze-contribution-tool/invoke",
requestHeader: map[string]string{},
requestBody: bytes.NewBuffer([]byte(fmt.Sprintf(`{"input_data": "%s"}`, dataTable))),
isErr: true,
},
{
name: "invoke my-analyze-contribution-tool with table",
api: "http://127.0.0.1:5000/api/tool/my-analyze-contribution-tool/invoke",
requestHeader: map[string]string{},
requestBody: bytes.NewBuffer([]byte(fmt.Sprintf(`{"input_data": "%s", "contribution_metric": "SUM(metric)", "is_test_col": "is_test", "dimension_id_cols": ["dim1", "dim2"]}`, dataTable))),
want: `"relative_difference"`,
isErr: false,
},
{
name: "invoke my-auth-analyze-contribution-tool with auth token",
api: "http://127.0.0.1:5000/api/tool/my-auth-analyze-contribution-tool/invoke",
requestHeader: map[string]string{"my-google-auth_token": idToken},
requestBody: bytes.NewBuffer([]byte(fmt.Sprintf(`{"input_data": "%s", "contribution_metric": "SUM(metric)", "is_test_col": "is_test", "dimension_id_cols": ["dim1", "dim2"]}`, dataTable))),
want: `"relative_difference"`,
isErr: false,
},
{
name: "invoke my-auth-analyze-contribution-tool with invalid auth token",
api: "http://127.0.0.1:5000/api/tool/my-auth-analyze-contribution-tool/invoke",
requestHeader: map[string]string{"my-google-auth_token": "INVALID_TOKEN"},
requestBody: bytes.NewBuffer([]byte(fmt.Sprintf(`{"input_data": "%s", "contribution_metric": "SUM(metric)", "is_test_col": "is_test", "dimension_id_cols": ["dim1", "dim2"]}`, dataTable))),
isErr: true,
},
{
name: "Invoke my-client-auth-analyze-contribution-tool with auth token",
api: "http://127.0.0.1:5000/api/tool/my-client-auth-analyze-contribution-tool/invoke",
requestHeader: map[string]string{"Authorization": accessToken},
requestBody: bytes.NewBuffer([]byte(fmt.Sprintf(`{"input_data": "%s", "contribution_metric": "SUM(metric)", "is_test_col": "is_test", "dimension_id_cols": ["dim1", "dim2"]}`, dataTable))),
want: `"relative_difference"`,
isErr: false,
},
{
name: "Invoke my-client-auth-analyze-contribution-tool without auth token",
api: "http://127.0.0.1:5000/api/tool/my-client-auth-analyze-contribution-tool/invoke",
requestHeader: map[string]string{},
requestBody: bytes.NewBuffer([]byte(fmt.Sprintf(`{"input_data": "%s", "contribution_metric": "SUM(metric)", "is_test_col": "is_test", "dimension_id_cols": ["dim1", "dim2"]}`, dataTable))),
isErr: true,
},
{
name: "Invoke my-client-auth-analyze-contribution-tool with invalid auth token",
api: "http://127.0.0.1:5000/api/tool/my-client-auth-analyze-contribution-tool/invoke",
requestHeader: map[string]string{"Authorization": "Bearer invalid-token"},
requestBody: bytes.NewBuffer([]byte(fmt.Sprintf(`{"input_data": "%s", "contribution_metric": "SUM(metric)", "is_test_col": "is_test", "dimension_id_cols": ["dim1", "dim2"]}`, dataTable))),
isErr: true,
},
}
for _, tc := range invokeTcs {
t.Run(tc.name, func(t *testing.T) {
// Send Tool invocation request
req, err := http.NewRequest(http.MethodPost, tc.api, tc.requestBody)
if err != nil {
t.Fatalf("unable to create request: %s", err)
}
req.Header.Add("Content-type", "application/json")
for k, v := range tc.requestHeader {
req.Header.Add(k, v)
}
resp, err := http.DefaultClient.Do(req)
if err != nil {
t.Fatalf("unable to send request: %s", err)
}
defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {
if tc.isErr {
return
}
bodyBytes, _ := io.ReadAll(resp.Body)
t.Fatalf("response status code is not 200, got %d: %s", resp.StatusCode, string(bodyBytes))
}
// Check response body
var body map[string]interface{}
err = json.NewDecoder(resp.Body).Decode(&body)
if err != nil {
t.Fatalf("error parsing response body")
}
got, ok := body["result"].(string)
if !ok {
t.Fatalf("unable to find result in response body")
}
if !strings.Contains(got, tc.want) {
t.Fatalf("expected %q to contain %q, but it did not", got, tc.want)
}
})
}
}
func runBigQueryDataTypeTests(t *testing.T) {
// Test tool invoke endpoint
invokeTcs := []struct {