mirror of
https://github.com/googleapis/genai-toolbox.git
synced 2026-02-04 04:05:22 -05:00
docs: add pre/post processing docs for langchain python
This commit is contained in:
4
docs/en/samples/pre_post_processing/python/__init__.py
Normal file
4
docs/en/samples/pre_post_processing/python/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
# This file makes the 'pre_post_processing/python' directory a Python package.
|
||||
|
||||
# You can include any package-level initialization logic here if needed.
|
||||
# For now, this file is empty.
|
||||
58
docs/en/samples/pre_post_processing/python/agent_test.py
Normal file
58
docs/en/samples/pre_post_processing/python/agent_test.py
Normal file
@@ -0,0 +1,58 @@
|
||||
# Copyright 2026 Google LLC
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import pytest
|
||||
from pathlib import Path
|
||||
import asyncio
|
||||
import sys
|
||||
import importlib.util
|
||||
|
||||
ORCH_NAME = os.environ.get("ORCH_NAME")
|
||||
module_path = f"python.{ORCH_NAME}.agent"
|
||||
agent = importlib.import_module(module_path)
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def golden_keywords():
|
||||
"""Loads expected keywords from the golden.txt file."""
|
||||
golden_file_path = Path(__file__).resolve().parent.parent / "golden.txt"
|
||||
if not golden_file_path.exists():
|
||||
pytest.fail(f"Golden file not found: {golden_file_path}")
|
||||
try:
|
||||
with open(golden_file_path, 'r') as f:
|
||||
return [line.strip() for line in f.readlines() if line.strip()]
|
||||
except Exception as e:
|
||||
pytest.fail(f"Could not read golden.txt: {e}")
|
||||
|
||||
|
||||
# --- Execution Tests ---
|
||||
class TestExecution:
|
||||
"""Test framework execution and output validation."""
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def script_output(self, capsys):
|
||||
"""Run the agent function and return its output."""
|
||||
asyncio.run(agent.main())
|
||||
return capsys.readouterr()
|
||||
|
||||
def test_script_runs_without_errors(self, script_output):
|
||||
"""Test that the script runs and produces no stderr."""
|
||||
assert script_output.err == "", f"Script produced stderr: {script_output.err}"
|
||||
|
||||
def test_keywords_in_output(self, script_output, golden_keywords):
|
||||
"""Test that expected keywords are present in the script's output."""
|
||||
output = script_output.out
|
||||
missing_keywords = [kw for kw in golden_keywords if kw not in output]
|
||||
assert not missing_keywords, f"Missing keywords in output: {missing_keywords}"
|
||||
@@ -0,0 +1 @@
|
||||
# LangChain sample package
|
||||
@@ -0,0 +1,95 @@
|
||||
import asyncio
|
||||
import re
|
||||
import json
|
||||
from typing import Callable, Any
|
||||
from toolbox_langchain import ToolboxClient
|
||||
from toolbox_core.protocol import Protocol
|
||||
from langchain_google_vertexai import ChatVertexAI
|
||||
from langchain_core.messages import ToolMessage, messages_to_dict
|
||||
from langchain.agents import create_agent
|
||||
from langchain.agents.middleware import (
|
||||
wrap_tool_call,
|
||||
AgentState
|
||||
)
|
||||
|
||||
system_prompt = """
|
||||
You're a helpful hotel assistant. You handle hotel searching, booking and
|
||||
cancellations. When the user searches for a hotel, mention it's name, id,
|
||||
location and price tier. Always mention hotel ids while performing any
|
||||
searches. This is very important for any operations. For any bookings or
|
||||
cancellations, please provide the appropriate confirmation. Be sure to
|
||||
update checkin or checkout dates if mentioned by the user.
|
||||
Don't ask for confirmations from the user.
|
||||
"""
|
||||
|
||||
# Pre processing
|
||||
@wrap_tool_call
|
||||
async def enforce_business_rules(request, handler):
|
||||
"""
|
||||
Business Logic Validation:
|
||||
Enforces max stay duration (e.g., max 14 days).
|
||||
"""
|
||||
tool_call = request.tool_call
|
||||
name = tool_call["name"]
|
||||
args = tool_call["args"]
|
||||
|
||||
print(f"POLICY CHECK: Intercepting '{name}'")
|
||||
|
||||
if name == "book-hotel":
|
||||
if "duration_days" in args and int(args["duration_days"]) > 14:
|
||||
print("BLOCKED: Stay too long")
|
||||
return ToolMessage(
|
||||
content="Error: Maximum stay duration is 14 days.",
|
||||
tool_call_id=tool_call["id"]
|
||||
)
|
||||
|
||||
return await handler(request)
|
||||
|
||||
# Post processing
|
||||
@wrap_tool_call
|
||||
async def enrich_response(request, handler):
|
||||
"""
|
||||
Post-Processing & Enrichment:
|
||||
Adds loyalty points information to successful bookings.
|
||||
Standardizes output format.
|
||||
"""
|
||||
result = await handler(request)
|
||||
|
||||
if isinstance(result, ToolMessage):
|
||||
content = str(result.content)
|
||||
tool_name = request.tool_call["name"]
|
||||
|
||||
if tool_name == "book-hotel" and "Error" not in content:
|
||||
loyalty_bonus = 500
|
||||
result.content = f"Booking Confirmed! \n You earned {loyalty_bonus} Loyalty Points with this stay.\n\nSystem Details: {content}"
|
||||
|
||||
return result
|
||||
|
||||
|
||||
async def main():
|
||||
async with ToolboxClient("http://127.0.0.1:5000") as client:
|
||||
tools = await client.aload_toolset("my-toolset")
|
||||
model = ChatVertexAI(model="gemini-2.5-flash")
|
||||
agent = create_agent(
|
||||
system_prompt=system_prompt,
|
||||
model=model,
|
||||
tools=tools,
|
||||
middleware=[
|
||||
enforce_business_rules,
|
||||
enrich_response
|
||||
],
|
||||
)
|
||||
|
||||
user_input = "Book hotel with id 3."
|
||||
response = await agent.ainvoke({"messages": [{"role": "user", "content": user_input}]})
|
||||
|
||||
print("-" * 50)
|
||||
print("Final Client Response:")
|
||||
serializable_response = {
|
||||
"messages": messages_to_dict(response["messages"])
|
||||
}
|
||||
last_ai_msg = response["messages"][-1].content
|
||||
print(f"AI: {last_ai_msg}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
@@ -0,0 +1,2 @@
|
||||
langchain==1.2.6
|
||||
toolbox-langchain==0.5.7
|
||||
Reference in New Issue
Block a user