docs: add pre/post processing docs for langchain python

This commit is contained in:
Twisha Bansal
2026-01-28 18:14:05 +05:30
parent 35fa73516b
commit 8b33b0c67f
7 changed files with 243 additions and 0 deletions

View File

@@ -0,0 +1,4 @@
# This file makes the 'pre_post_processing/python' directory a Python package.
# You can include any package-level initialization logic here if needed.
# For now, this file is empty.

View File

@@ -0,0 +1,58 @@
# Copyright 2026 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pytest
from pathlib import Path
import asyncio
import sys
import importlib.util
ORCH_NAME = os.environ.get("ORCH_NAME")
module_path = f"python.{ORCH_NAME}.agent"
agent = importlib.import_module(module_path)
@pytest.fixture(scope="module")
def golden_keywords():
"""Loads expected keywords from the golden.txt file."""
golden_file_path = Path(__file__).resolve().parent.parent / "golden.txt"
if not golden_file_path.exists():
pytest.fail(f"Golden file not found: {golden_file_path}")
try:
with open(golden_file_path, 'r') as f:
return [line.strip() for line in f.readlines() if line.strip()]
except Exception as e:
pytest.fail(f"Could not read golden.txt: {e}")
# --- Execution Tests ---
class TestExecution:
"""Test framework execution and output validation."""
@pytest.fixture(scope="function")
def script_output(self, capsys):
"""Run the agent function and return its output."""
asyncio.run(agent.main())
return capsys.readouterr()
def test_script_runs_without_errors(self, script_output):
"""Test that the script runs and produces no stderr."""
assert script_output.err == "", f"Script produced stderr: {script_output.err}"
def test_keywords_in_output(self, script_output, golden_keywords):
"""Test that expected keywords are present in the script's output."""
output = script_output.out
missing_keywords = [kw for kw in golden_keywords if kw not in output]
assert not missing_keywords, f"Missing keywords in output: {missing_keywords}"

View File

@@ -0,0 +1 @@
# LangChain sample package

View File

@@ -0,0 +1,95 @@
import asyncio
import re
import json
from typing import Callable, Any
from toolbox_langchain import ToolboxClient
from toolbox_core.protocol import Protocol
from langchain_google_vertexai import ChatVertexAI
from langchain_core.messages import ToolMessage, messages_to_dict
from langchain.agents import create_agent
from langchain.agents.middleware import (
wrap_tool_call,
AgentState
)
system_prompt = """
You're a helpful hotel assistant. You handle hotel searching, booking and
cancellations. When the user searches for a hotel, mention it's name, id,
location and price tier. Always mention hotel ids while performing any
searches. This is very important for any operations. For any bookings or
cancellations, please provide the appropriate confirmation. Be sure to
update checkin or checkout dates if mentioned by the user.
Don't ask for confirmations from the user.
"""
# Pre processing
@wrap_tool_call
async def enforce_business_rules(request, handler):
"""
Business Logic Validation:
Enforces max stay duration (e.g., max 14 days).
"""
tool_call = request.tool_call
name = tool_call["name"]
args = tool_call["args"]
print(f"POLICY CHECK: Intercepting '{name}'")
if name == "book-hotel":
if "duration_days" in args and int(args["duration_days"]) > 14:
print("BLOCKED: Stay too long")
return ToolMessage(
content="Error: Maximum stay duration is 14 days.",
tool_call_id=tool_call["id"]
)
return await handler(request)
# Post processing
@wrap_tool_call
async def enrich_response(request, handler):
"""
Post-Processing & Enrichment:
Adds loyalty points information to successful bookings.
Standardizes output format.
"""
result = await handler(request)
if isinstance(result, ToolMessage):
content = str(result.content)
tool_name = request.tool_call["name"]
if tool_name == "book-hotel" and "Error" not in content:
loyalty_bonus = 500
result.content = f"Booking Confirmed! \n You earned {loyalty_bonus} Loyalty Points with this stay.\n\nSystem Details: {content}"
return result
async def main():
async with ToolboxClient("http://127.0.0.1:5000") as client:
tools = await client.aload_toolset("my-toolset")
model = ChatVertexAI(model="gemini-2.5-flash")
agent = create_agent(
system_prompt=system_prompt,
model=model,
tools=tools,
middleware=[
enforce_business_rules,
enrich_response
],
)
user_input = "Book hotel with id 3."
response = await agent.ainvoke({"messages": [{"role": "user", "content": user_input}]})
print("-" * 50)
print("Final Client Response:")
serializable_response = {
"messages": messages_to_dict(response["messages"])
}
last_ai_msg = response["messages"][-1].content
print(f"AI: {last_ai_msg}")
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,2 @@
langchain==1.2.6
toolbox-langchain==0.5.7