import asyncio from langchain.agents import create_agent from langchain.agents.middleware import wrap_tool_call from langchain_core.messages import ToolMessage, messages_to_dict from langchain_google_vertexai import ChatVertexAI from toolbox_langchain import ToolboxClient system_prompt = """ You're a helpful hotel assistant. You handle hotel searching, booking and cancellations. When the user searches for a hotel, mention it's name, id, location and price tier. Always mention hotel ids while performing any searches. This is very important for any operations. For any bookings or cancellations, please provide the appropriate confirmation. Be sure to update checkin or checkout dates if mentioned by the user. Don't ask for confirmations from the user. """ # Pre processing @wrap_tool_call async def enforce_business_rules(request, handler): """ Business Logic Validation: Enforces max stay duration (e.g., max 14 days). """ tool_call = request.tool_call name = tool_call["name"] args = tool_call["args"] print(f"POLICY CHECK: Intercepting '{name}'") if name == "book-hotel": if "duration_days" in args and int(args["duration_days"]) > 14: print("BLOCKED: Stay too long") return ToolMessage( content="Error: Maximum stay duration is 14 days.", tool_call_id=tool_call["id"], ) return await handler(request) # Post processing @wrap_tool_call async def enrich_response(request, handler): """ Post-Processing & Enrichment: Adds loyalty points information to successful bookings. Standardizes output format. """ result = await handler(request) if isinstance(result, ToolMessage): content = str(result.content) tool_name = request.tool_call["name"] if tool_name == "book-hotel" and "Error" not in content: loyalty_bonus = 500 result.content = f"Booking Confirmed! \n You earned {loyalty_bonus} Loyalty Points with this stay.\n\nSystem Details: {content}" return result async def main(): async with ToolboxClient("http://127.0.0.1:5000") as client: tools = await client.aload_toolset("my-toolset") model = ChatVertexAI(model="gemini-2.5-flash") agent = create_agent( system_prompt=system_prompt, model=model, tools=tools, middleware=[enforce_business_rules, enrich_response], ) user_input = "Book hotel with id 3." response = await agent.ainvoke( {"messages": [{"role": "user", "content": user_input}]} ) print("-" * 50) print("Final Client Response:") last_ai_msg = response["messages"][-1].content print(f"AI: {last_ai_msg}") if __name__ == "__main__": asyncio.run(main())