This PR updates the documentation across the repository to reflect the new installation workflow using `npx` and Node.js, replacing the previous binary download instructions. It also standardizes the prerequisites and adds helpful configuration notes for Windows users. These changes simplify the setup process for users by leveraging `npx` for executing the tools, ensuring they always use the latest version without manual binary management. It also addresses feedback from PR #2079 regarding installation clarity and Windows support. --------- Co-authored-by: Twisha Bansal <twishabansal07@gmail.com>
4.2 KiB
Looker MCP Server
The Looker Model Context Protocol (MCP) Server gives AI-powered development tools the ability to work with your Looker instance. It supports exploring models, running queries, managing dashboards, and more.
Features
An editor configured to use the Looker MCP server can use its AI capabilities to help you:
- Explore Models - Get models, explores, dimensions, measures, filters, and parameters
- Run Queries - Execute Looker queries, generate SQL, and create query URLs
- Manage Dashboards - Create, run, and modify dashboards
- Manage Looks - Search for and run saved looks
- Health Checks - Analyze instance health and performance
Prerequisites
- Node.js installed.
- Access to a Looker instance.
- API Credentials (
Client IDandClient Secret) or OAuth configuration.
Install & Configuration
-
In the Antigravity MCP Store, click the "Install" button.
-
Add the required inputs for your instance in the configuration pop-up, then click "Save". You can update this configuration at any time in the "Configure" tab.
You'll now be able to see all enabled tools in the "Tools" tab.
Note
If you encounter issues with Windows Defender blocking the execution, you may need to configure an allowlist. See Configure exclusions for Microsoft Defender Antivirus for more details.
Usage
Once configured, the MCP server will automatically provide Looker capabilities to your AI assistant. You can:
- "Find explores in the 'ecommerce' model."
- "Run a query to show total sales by month."
- "Create a new dashboard named 'Sales Overview'."
Server Capabilities
The Looker MCP server provides a wide range of tools. Here are some of the key capabilities:
| Tool Name | Description |
|---|---|
get_models |
Retrieves the list of LookML models. |
get_explores |
Retrieves the list of explores defined in a LookML model. |
query |
Run a query against the LookML model. |
query_sql |
Generate the SQL that Looker would run. |
run_look |
Runs a saved look. |
run_dashboard |
Runs all tiles in a dashboard. |
make_dashboard |
Creates a new dashboard. |
add_dashboard_element |
Adds a tile to a dashboard. |
health_pulse |
Checks the status of the Looker instance. |
dev_mode |
Toggles development mode. |
get_projects |
Lists LookML projects. |
Custom MCP Server Configuration
The MCP server is configured using environment variables.
export LOOKER_BASE_URL="<your-looker-instance-url>" # e.g. `https://looker.example.com`. You may need to add the port, i.e. `:19999`.
export LOOKER_CLIENT_ID="<your-looker-client-id>"
export LOOKER_CLIENT_SECRET="<your-looker-client-secret>"
export LOOKER_VERIFY_SSL="true" # Optional, defaults to true
export LOOKER_SHOW_HIDDEN_MODELS="true" # Optional, defaults to true
export LOOKER_SHOW_HIDDEN_EXPLORES="true" # Optional, defaults to true
export LOOKER_SHOW_HIDDEN_FIELDS="true" # Optional, defaults to true
Add the following configuration to your MCP client (e.g., settings.json for Gemini CLI, mcp_config.json for Antigravity):
{
"mcpServers": {
"looker": {
"command": "npx",
"args": ["-y", "@toolbox-sdk/server", "--prebuilt", "looker", "--stdio"],
"env": {
"LOOKER_BASE_URL": "https://your.looker.instance.com",
"LOOKER_CLIENT_ID": "your-client-id",
"LOOKER_CLIENT_SECRET": "your-client-secret"
}
}
}
}
Documentation
For more information, visit the Looker documentation.