🤖 I have created a release *beep* *boop* --- ## [0.3.0](https://github.com/googleapis/genai-toolbox/compare/v0.2.1...v0.3.0) (2025-04-04) ### Features * Add 'alloydb-ai-nl' tool ([#358](https://github.com/googleapis/genai-toolbox/issues/358)) ([f02885f](f02885fd4a)) * Add HTTP Source and Tool ([#332](https://github.com/googleapis/genai-toolbox/issues/332)) ([64da5b4](64da5b4efe)) * Adding support for Model Context Protocol (MCP). ([#396](https://github.com/googleapis/genai-toolbox/issues/396)) ([a7d1d4e](a7d1d4eb2a)) * Added [toolbox-core](https://pypi.org/project/toolbox-core/) SDK – easily integrate Toolbox into any Python function calling framework ### Bug Fixes * Add `tools-file` flag and deprecate `tools_file` ([#384](https://github.com/googleapis/genai-toolbox/issues/384)) ([34a7263](34a7263fdc)), closes [#383](https://github.com/googleapis/genai-toolbox/issues/383) --- This PR was generated with [Release Please](https://github.com/googleapis/release-please). See [documentation](https://github.com/googleapis/release-please#release-please). --------- Co-authored-by: release-please[bot] <55107282+release-please[bot]@users.noreply.github.com> Co-authored-by: Kurtis Van Gent <31518063+kurtisvg@users.noreply.github.com>
13 KiB
title, type, weight, description
| title | type | weight | description |
|---|---|---|---|
| Quickstart (Local) | docs | 2 | How to get started running Toolbox locally with Python, PostgreSQL, and LangGraph or LlamaIndex. |
Before you begin
This guide assumes you have already done the following:
- Installed Python 3.9+ (including pip and your preferred virtual environment tool for managing dependencies e.g. venv)
- Installed PostgreSQL 16+ and the
psqlclient - Completed setup for usage with an LLM model such as {{< tabpane text=true persist=header >}} {{% tab header="LangChain" lang="en" %}}
-
langchain-vertexai package.
-
langchain-google-genai package.
-
langchain-anthropic package. {{% /tab %}} {{% tab header="LlamaIndex" lang="en" %}}
-
llama-index-llms-google-genai package.
-
llama-index-llms-anthropic package. {{% /tab %}} {{< /tabpane >}}
Step 1: Set up your database
In this section, we will create a database, insert some data that needs to be access by our agent, and create a database user for Toolbox to connect with.
-
Connect to postgres using the
psqlcommand:psql -h 127.0.0.1 -U postgresHere,
postgresdenotes the default postgres superuser. -
Create a new database and a new user:
{{< notice tip >}} For a real application, it's best to follow the principle of least permission and only grant the privileges your application needs. {{< /notice >}}
CREATE USER toolbox_user WITH PASSWORD 'my-password'; CREATE DATABASE toolbox_db; GRANT ALL PRIVILEGES ON DATABASE toolbox_db TO toolbox_user; ALTER DATABASE toolbox_db OWNER TO toolbox_user; -
End the database session:
\q -
Connect to your database with your new user:
psql -h 127.0.0.1 -U toolbox_user -d toolbox_db -
Create a table using the following command:
CREATE TABLE hotels( id INTEGER NOT NULL PRIMARY KEY, name VARCHAR NOT NULL, location VARCHAR NOT NULL, price_tier VARCHAR NOT NULL, checkin_date DATE NOT NULL, checkout_date DATE NOT NULL, booked BIT NOT NULL ); -
Insert data into the table.
INSERT INTO hotels(id, name, location, price_tier, checkin_date, checkout_date, booked) VALUES (1, 'Hilton Basel', 'Basel', 'Luxury', '2024-04-22', '2024-04-20', B'0'), (2, 'Marriott Zurich', 'Zurich', 'Upscale', '2024-04-14', '2024-04-21', B'0'), (3, 'Hyatt Regency Basel', 'Basel', 'Upper Upscale', '2024-04-02', '2024-04-20', B'0'), (4, 'Radisson Blu Lucerne', 'Lucerne', 'Midscale', '2024-04-24', '2024-04-05', B'0'), (5, 'Best Western Bern', 'Bern', 'Upper Midscale', '2024-04-23', '2024-04-01', B'0'), (6, 'InterContinental Geneva', 'Geneva', 'Luxury', '2024-04-23', '2024-04-28', B'0'), (7, 'Sheraton Zurich', 'Zurich', 'Upper Upscale', '2024-04-27', '2024-04-02', B'0'), (8, 'Holiday Inn Basel', 'Basel', 'Upper Midscale', '2024-04-24', '2024-04-09', B'0'), (9, 'Courtyard Zurich', 'Zurich', 'Upscale', '2024-04-03', '2024-04-13', B'0'), (10, 'Comfort Inn Bern', 'Bern', 'Midscale', '2024-04-04', '2024-04-16', B'0'); -
End the database session:
\q
Step 2: Install and configure Toolbox
In this section, we will download Toolbox, configure our tools in a
tools.yaml, and then run the Toolbox server.
-
Download the latest version of Toolbox as a binary:
{{< notice tip >}} Select the correct binary corresponding to your OS and CPU architecture. {{< /notice >}}
export OS="linux/amd64" # one of linux/amd64, darwin/arm64, darwin/amd64, or windows/amd64 curl -O https://storage.googleapis.com/genai-toolbox/v0.3.0/$OS/toolbox -
Make the binary executable:
chmod +x toolbox -
Write the following into a
tools.yamlfile. Be sure to update any fields such asuser,password, ordatabasethat you may have customized in the previous step.sources: my-pg-source: kind: postgres host: 127.0.0.1 port: 5432 database: toolbox_db user: toolbox_user password: my-password tools: search-hotels-by-name: kind: postgres-sql source: my-pg-source description: Search for hotels based on name. parameters: - name: name type: string description: The name of the hotel. statement: SELECT * FROM hotels WHERE name ILIKE '%' || $1 || '%'; search-hotels-by-location: kind: postgres-sql source: my-pg-source description: Search for hotels based on location. parameters: - name: location type: string description: The location of the hotel. statement: SELECT * FROM hotels WHERE location ILIKE '%' || $1 || '%'; book-hotel: kind: postgres-sql source: my-pg-source description: >- Book a hotel by its ID. If the hotel is successfully booked, returns a NULL, raises an error if not. parameters: - name: hotel_id type: string description: The ID of the hotel to book. statement: UPDATE hotels SET booked = B'1' WHERE id = $1; update-hotel: kind: postgres-sql source: my-pg-source description: >- Update a hotel's check-in and check-out dates by its ID. Returns a message indicating whether the hotel was successfully updated or not. parameters: - name: hotel_id type: string description: The ID of the hotel to update. - name: checkin_date type: string description: The new check-in date of the hotel. - name: checkout_date type: string description: The new check-out date of the hotel. statement: >- UPDATE hotels SET checkin_date = CAST($2 as date), checkout_date = CAST($3 as date) WHERE id = $1; cancel-hotel: kind: postgres-sql source: my-pg-source description: Cancel a hotel by its ID. parameters: - name: hotel_id type: string description: The ID of the hotel to cancel. statement: UPDATE hotels SET booked = B'0' WHERE id = $1;For more info on tools, check out the
Resourcessection of the docs. -
Run the Toolbox server, pointing to the
tools.yamlfile created earlier:./toolbox --tools_file "tools.yaml"
Step 3: Connect your agent to Toolbox
In this section, we will write and run an agent that will load the Tools from Toolbox.
{{< notice tip>}} If you prefer to experiment within a Google Colab environment, you can connect to a local runtime. {{< /notice >}}
-
In a new terminal, install the SDK package.
{{< tabpane persist=header >}} {{< tab header="Langchain" lang="bash" >}}
pip install toolbox-langchain {{< /tab >}} {{< tab header="LlamaIndex" lang="bash" >}}
pip install toolbox-llamaindex {{< /tab >}} {{< /tabpane >}}
-
Install other required dependencies:
{{< tabpane persist=header >}} {{< tab header="Langchain" lang="bash" >}}
TODO(developer): replace with correct package if needed
pip install langgraph langchain-google-vertexai
pip install langchain-google-genai
pip install langchain-anthropic
{{< /tab >}} {{< tab header="LlamaIndex" lang="bash" >}}
TODO(developer): replace with correct package if needed
pip install llama-index-llms-google-genai
pip install llama-index-llms-anthropic
{{< /tab >}} {{< /tabpane >}}
- Create a new file named
hotel_agent.pyand copy the following code to create an agent: {{< tabpane persist=header >}} {{< tab header="LangChain" lang="python" >}}
from langgraph.prebuilt import create_react_agent
TODO(developer): replace this with another import if needed
from langchain_google_vertexai import ChatVertexAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_anthropic import ChatAnthropic
from langgraph.checkpoint.memory import MemorySaver
from toolbox_langchain import ToolboxClient
prompt = """ You're a helpful hotel assistant. You handle hotel searching, booking and cancellations. When the user searches for a hotel, mention it's name, id, location and price tier. Always mention hotel ids while performing any searches. This is very important for any operations. For any bookings or cancellations, please provide the appropriate confirmation. Be sure to update checkin or checkout dates if mentioned by the user. Don't ask for confirmations from the user. """
queries = [ "Find hotels in Basel with Basel in it's name.", "Can you book the Hilton Basel for me?", "Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.", "My check in dates would be from April 10, 2024 to April 19, 2024.", ]
def main(): # TODO(developer): replace this with another model if needed model = ChatVertexAI(model_name="gemini-1.5-pro") # model = ChatGoogleGenerativeAI(model="gemini-1.5-pro") # model = ChatAnthropic(model="claude-3-5-sonnet-20240620")
# Load the tools from the Toolbox server
client = ToolboxClient("http://127.0.0.1:5000")
tools = client.load_toolset()
agent = create_react_agent(model, tools, checkpointer=MemorySaver())
config = {"configurable": {"thread_id": "thread-1"}}
for query in queries:
inputs = {"messages": [("user", prompt + query)]}
response = agent.invoke(inputs, stream_mode="values", config=config)
print(response["messages"][-1].content)
main() {{< /tab >}} {{< tab header="LlamaIndex" lang="python" >}} import asyncio import os
from llama_index.core.agent.workflow import AgentWorkflow
from llama_index.core.workflow import Context
TODO(developer): replace this with another import if needed
from llama_index.llms.google_genai import GoogleGenAI
from llama_index.llms.anthropic import Anthropic
from toolbox_llamaindex import ToolboxClient
prompt = """ You're a helpful hotel assistant. You handle hotel searching, booking and cancellations. When the user searches for a hotel, mention it's name, id, location and price tier. Always mention hotel ids while performing any searches. This is very important for any operations. For any bookings or cancellations, please provide the appropriate confirmation. Be sure to update checkin or checkout dates if mentioned by the user. Don't ask for confirmations from the user. """
queries = [ "Find hotels in Basel with Basel in it's name.", "Can you book the Hilton Basel for me?", "Oh wait, this is too expensive. Please cancel it and book the Hyatt Regency instead.", "My check in dates would be from April 10, 2024 to April 19, 2024.", ]
async def main(): # TODO(developer): replace this with another model if needed llm = GoogleGenAI( model="gemini-1.5-pro", vertexai_config={"project": "project-id", "location": "us-central1"}, ) # llm = GoogleGenAI( # api_key=os.getenv("GOOGLE_API_KEY"), # model="gemini-1.5-pro", # ) # llm = Anthropic( # model="claude-3-7-sonnet-latest", # api_key=os.getenv("ANTHROPIC_API_KEY") # )
# Load the tools from the Toolbox server
client = ToolboxClient("http://127.0.0.1:5000")
tools = client.load_toolset()
agent = AgentWorkflow.from_tools_or_functions(
tools,
llm=llm,
system_prompt=prompt,
)
ctx = Context(agent)
for query in queries:
response = await agent.run(user_msg=query, ctx=ctx)
print(f"---- {query} ----")
print(str(response))
asyncio.run(main()) {{< /tab >}} {{< /tabpane >}}
{{< tabpane text=true persist=header >}}
{{% tab header="Langchain" lang="en" %}} To learn more about Agents in LangChain, check out the LangGraph Agent documentation. {{% /tab %}} {{% tab header="LlamaIndex" lang="en" %}} To learn more about Agents in LlamaIndex, check out the LlamaIndex AgentWorkflow documentation. {{% /tab %}} {{< /tabpane >}}
-
Run your agent, and observe the results:
python hotel_agent.py