Files
genai-toolbox/internal/embeddingmodels/gemini/gemini.go
Yuan Teoh 293c1d6889 feat!: update configuration file v2 (#2369)
This PR introduces a significant update to the Toolbox configuration
file format, which is one of the primary **breaking changes** required
for the implementation of the Advanced Control Plane.

# Summary of Changes
The configuration schema has been updated to enforce resource isolation
and facilitate atomic, incremental updates.
* Resource Isolation: Resource definitions are now separated into
individual blocks, using a distinct structure for each resource type
(Source, Tool, Toolset, etc.). This improves readability, management,
and auditing of configuration files.
* Field Name Modification: Internal field names have been modified to
align with declarative methodologies. Specifically, the configuration
now separates kind (general resource type, e.g., Source) from type
(specific implementation, e.g., Postgres).

# User Impact
Existing tools.yaml configuration files are now in an outdated format.
Users must eventually update their files to the new YAML format.

# Mitigation & Compatibility
Backward compatibility is maintained during this transition to ensure no
immediate user action is required for existing files.
* Immediate Backward Compatibility: The source code includes a
pre-processing layer that automatically detects outdated configuration
files (v1 format) and converts them to the new v2 format under the hood.
* [COMING SOON] Migration Support: The new toolbox migrate subcommand
will be introduced to allow users to automatically convert their old
configuration files to the latest format.

# Example
Example for config file v2:
```
kind: sources
name: my-pg-instance
type: cloud-sql-postgres
project: my-project
region: my-region
instance: my-instance
database: my_db
user: my_user
password: my_pass
---
kind: authServices
name: my-google-auth
type: google
clientId: testing-id
---
kind: tools
name: example_tool
type: postgres-sql
source: my-pg-instance
description: some description
statement: SELECT * FROM SQL_STATEMENT;
parameters:
- name: country
  type: string
  description: some description
---
kind: tools
name: example_tool_2
type: postgres-sql
source: my-pg-instance
description: returning the number one
statement: SELECT 1;
---
kind: toolsets
name: example_toolset
tools:
- example_tool
```

---------

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Averi Kitsch <akitsch@google.com>
2026-01-27 16:58:43 -08:00

123 lines
3.3 KiB
Go

// Copyright 2026 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package gemini
import (
"context"
"fmt"
"github.com/googleapis/genai-toolbox/internal/embeddingmodels"
"github.com/googleapis/genai-toolbox/internal/util"
"google.golang.org/genai"
)
const EmbeddingModelType string = "gemini"
// validate interface
var _ embeddingmodels.EmbeddingModelConfig = Config{}
type Config struct {
Name string `yaml:"name" validate:"required"`
Type string `yaml:"type" validate:"required"`
Model string `yaml:"model" validate:"required"`
ApiKey string `yaml:"apiKey"`
Dimension int32 `yaml:"dimension"`
}
// Returns the embedding model type
func (cfg Config) EmbeddingModelConfigType() string {
return EmbeddingModelType
}
// Initialize a Gemini embedding model
func (cfg Config) Initialize(ctx context.Context) (embeddingmodels.EmbeddingModel, error) {
// Get client configs
configs := &genai.ClientConfig{}
if cfg.ApiKey != "" {
configs.APIKey = cfg.ApiKey
}
// Create new Gemini API client
client, err := genai.NewClient(ctx, configs)
if err != nil {
return nil, fmt.Errorf("unable to create Gemini API client")
}
m := &EmbeddingModel{
Config: cfg,
Client: client,
}
return m, nil
}
var _ embeddingmodels.EmbeddingModel = EmbeddingModel{}
type EmbeddingModel struct {
Client *genai.Client
Config
}
// Returns the embedding model type
func (m EmbeddingModel) EmbeddingModelType() string {
return EmbeddingModelType
}
func (m EmbeddingModel) ToConfig() embeddingmodels.EmbeddingModelConfig {
return m.Config
}
func (m EmbeddingModel) EmbedParameters(ctx context.Context, parameters []string) ([][]float32, error) {
logger, err := util.LoggerFromContext(ctx)
if err != nil {
return nil, fmt.Errorf("unable to get logger from ctx: %s", err)
}
contents := convertStringsToContents(parameters)
embedConfig := &genai.EmbedContentConfig{
TaskType: "SEMANTIC_SIMILARITY",
}
if m.Dimension > 0 {
embedConfig.OutputDimensionality = genai.Ptr(m.Dimension)
}
result, err := m.Client.Models.EmbedContent(ctx, m.Model, contents, embedConfig)
if err != nil {
logger.ErrorContext(ctx, "Error calling EmbedContent for model %s: %v", m.Model, err)
return nil, err
}
embeddings := make([][]float32, 0, len(result.Embeddings))
for _, embedding := range result.Embeddings {
embeddings = append(embeddings, embedding.Values)
}
logger.InfoContext(ctx, "Successfully embedded %d text parameters using model %s", len(parameters), m.Model)
return embeddings, nil
}
// convertStringsToContents takes a slice of strings and converts it into a slice of *genai.Content objects.
func convertStringsToContents(texts []string) []*genai.Content {
contents := make([]*genai.Content, 0, len(texts))
for _, text := range texts {
content := genai.NewContentFromText(text, "")
contents = append(contents, content)
}
return contents
}