First part of the implementation to support semantic search in tools. Second part: https://github.com/googleapis/genai-toolbox/pull/2151
2.5 KiB
title, type, weight, description
| title | type | weight | description |
|---|---|---|---|
| Gemini Embedding | docs | 1 | Use Google's Gemini models to generate high-performance text embeddings for vector databases. |
About
Google Gemini provides state-of-the-art embedding models that convert text into high-dimensional vectors.
Authentication
Toolbox uses your Application Default Credentials (ADC) to authorize with the Gemini API client.
Optionally, you can use an API key obtain an API Key from the Google AI Studio.
We recommend using an API key for testing and using application default credentials for production.
Behavior
Automatic Vectorization
When a tool parameter is configured with embeddedBy: <your-gemini-model-name>,
the Toolbox intercepts the raw text input from the client and sends it to the
Gemini API. The resulting numerical array is then formatted before being passed
to your database source.
Dimension Matching
The dimension field must match the expected size of your database column
(e.g., a vector(768) column in PostgreSQL). This setting is supported by newer
models since 2024 only. You cannot set this value if using the earlier model
(models/embedding-001). Check out available Gemini models for more
information.
Example
embeddingModels:
gemini-model:
kind: gemini
model: gemini-embedding-001
apiKey: ${GOOGLE_API_KEY}
dimension: 768
{{< notice tip >}} Use environment variable replacement with the format ${ENV_NAME} instead of hardcoding your secrets into the configuration file. {{< /notice >}}
Reference
| field | type | required | description |
|---|---|---|---|
| kind | string | true | Must be gemini. |
| model | string | true | The Gemini model ID to use (e.g., gemini-embedding-001). |
| apiKey | string | false | Your API Key from Google AI Studio. |
| dimension | integer | false | The number of dimensions in the output vector (e.g., 768). |