Files
genai-toolbox/internal/embeddingmodels/gemini/gemini.go
Wenxin Du 9c62f313ff feat: Add embeddingModel support (#2121)
First part of the implementation to support semantic search in tools.
Second part: https://github.com/googleapis/genai-toolbox/pull/2151
2026-01-05 19:34:54 -05:00

123 lines
3.3 KiB
Go

// Copyright 2026 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package gemini
import (
"context"
"fmt"
"github.com/googleapis/genai-toolbox/internal/embeddingmodels"
"github.com/googleapis/genai-toolbox/internal/util"
"google.golang.org/genai"
)
const EmbeddingModelKind string = "gemini"
// validate interface
var _ embeddingmodels.EmbeddingModelConfig = Config{}
type Config struct {
Name string `yaml:"name" validate:"required"`
Kind string `yaml:"kind" validate:"required"`
Model string `yaml:"model" validate:"required"`
ApiKey string `yaml:"apiKey"`
Dimension int32 `yaml:"dimension"`
}
// Returns the embedding model kind
func (cfg Config) EmbeddingModelConfigKind() string {
return EmbeddingModelKind
}
// Initialize a Gemini embedding model
func (cfg Config) Initialize(ctx context.Context) (embeddingmodels.EmbeddingModel, error) {
// Get client configs
configs := &genai.ClientConfig{}
if cfg.ApiKey != "" {
configs.APIKey = cfg.ApiKey
}
// Create new Gemini API client
client, err := genai.NewClient(ctx, configs)
if err != nil {
return nil, fmt.Errorf("unable to create Gemini API client")
}
m := &EmbeddingModel{
Config: cfg,
Client: client,
}
return m, nil
}
var _ embeddingmodels.EmbeddingModel = EmbeddingModel{}
type EmbeddingModel struct {
Client *genai.Client
Config
}
// Returns the embedding model kind
func (m EmbeddingModel) EmbeddingModelKind() string {
return EmbeddingModelKind
}
func (m EmbeddingModel) ToConfig() embeddingmodels.EmbeddingModelConfig {
return m.Config
}
func (m EmbeddingModel) EmbedParameters(ctx context.Context, parameters []string) ([][]float32, error) {
logger, err := util.LoggerFromContext(ctx)
if err != nil {
return nil, fmt.Errorf("unable to get logger from ctx: %s", err)
}
contents := convertStringsToContents(parameters)
embedConfig := &genai.EmbedContentConfig{
TaskType: "SEMANTIC_SIMILARITY",
}
if m.Dimension > 0 {
embedConfig.OutputDimensionality = genai.Ptr(m.Dimension)
}
result, err := m.Client.Models.EmbedContent(ctx, m.Model, contents, embedConfig)
if err != nil {
logger.ErrorContext(ctx, "Error calling EmbedContent for model %s: %v", m.Model, err)
return nil, err
}
embeddings := make([][]float32, 0, len(result.Embeddings))
for _, embedding := range result.Embeddings {
embeddings = append(embeddings, embedding.Values)
}
logger.InfoContext(ctx, "Successfully embedded %d text parameters using model %s", len(parameters), m.Model)
return embeddings, nil
}
// convertStringsToContents takes a slice of strings and converts it into a slice of *genai.Content objects.
func convertStringsToContents(texts []string) []*genai.Content {
contents := make([]*genai.Content, 0, len(texts))
for _, text := range texts {
content := genai.NewContentFromText(text, "")
contents = append(contents, content)
}
return contents
}