mirror of
https://github.com/googleapis/genai-toolbox.git
synced 2026-01-08 15:14:00 -05:00
First part of the implementation to support semantic search in tools. Second part: https://github.com/googleapis/genai-toolbox/pull/2151
123 lines
3.3 KiB
Go
123 lines
3.3 KiB
Go
// Copyright 2026 Google LLC
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package gemini
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
|
|
"github.com/googleapis/genai-toolbox/internal/embeddingmodels"
|
|
"github.com/googleapis/genai-toolbox/internal/util"
|
|
"google.golang.org/genai"
|
|
)
|
|
|
|
const EmbeddingModelKind string = "gemini"
|
|
|
|
// validate interface
|
|
var _ embeddingmodels.EmbeddingModelConfig = Config{}
|
|
|
|
type Config struct {
|
|
Name string `yaml:"name" validate:"required"`
|
|
Kind string `yaml:"kind" validate:"required"`
|
|
Model string `yaml:"model" validate:"required"`
|
|
ApiKey string `yaml:"apiKey"`
|
|
Dimension int32 `yaml:"dimension"`
|
|
}
|
|
|
|
// Returns the embedding model kind
|
|
func (cfg Config) EmbeddingModelConfigKind() string {
|
|
return EmbeddingModelKind
|
|
}
|
|
|
|
// Initialize a Gemini embedding model
|
|
func (cfg Config) Initialize(ctx context.Context) (embeddingmodels.EmbeddingModel, error) {
|
|
// Get client configs
|
|
configs := &genai.ClientConfig{}
|
|
if cfg.ApiKey != "" {
|
|
configs.APIKey = cfg.ApiKey
|
|
}
|
|
|
|
// Create new Gemini API client
|
|
client, err := genai.NewClient(ctx, configs)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to create Gemini API client")
|
|
}
|
|
|
|
m := &EmbeddingModel{
|
|
Config: cfg,
|
|
Client: client,
|
|
}
|
|
return m, nil
|
|
}
|
|
|
|
var _ embeddingmodels.EmbeddingModel = EmbeddingModel{}
|
|
|
|
type EmbeddingModel struct {
|
|
Client *genai.Client
|
|
Config
|
|
}
|
|
|
|
// Returns the embedding model kind
|
|
func (m EmbeddingModel) EmbeddingModelKind() string {
|
|
return EmbeddingModelKind
|
|
}
|
|
|
|
func (m EmbeddingModel) ToConfig() embeddingmodels.EmbeddingModelConfig {
|
|
return m.Config
|
|
}
|
|
|
|
func (m EmbeddingModel) EmbedParameters(ctx context.Context, parameters []string) ([][]float32, error) {
|
|
logger, err := util.LoggerFromContext(ctx)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to get logger from ctx: %s", err)
|
|
}
|
|
|
|
contents := convertStringsToContents(parameters)
|
|
|
|
embedConfig := &genai.EmbedContentConfig{
|
|
TaskType: "SEMANTIC_SIMILARITY",
|
|
}
|
|
|
|
if m.Dimension > 0 {
|
|
embedConfig.OutputDimensionality = genai.Ptr(m.Dimension)
|
|
}
|
|
|
|
result, err := m.Client.Models.EmbedContent(ctx, m.Model, contents, embedConfig)
|
|
if err != nil {
|
|
logger.ErrorContext(ctx, "Error calling EmbedContent for model %s: %v", m.Model, err)
|
|
return nil, err
|
|
}
|
|
|
|
embeddings := make([][]float32, 0, len(result.Embeddings))
|
|
for _, embedding := range result.Embeddings {
|
|
embeddings = append(embeddings, embedding.Values)
|
|
}
|
|
|
|
logger.InfoContext(ctx, "Successfully embedded %d text parameters using model %s", len(parameters), m.Model)
|
|
|
|
return embeddings, nil
|
|
}
|
|
|
|
// convertStringsToContents takes a slice of strings and converts it into a slice of *genai.Content objects.
|
|
func convertStringsToContents(texts []string) []*genai.Content {
|
|
contents := make([]*genai.Content, 0, len(texts))
|
|
|
|
for _, text := range texts {
|
|
content := genai.NewContentFromText(text, "")
|
|
contents = append(contents, content)
|
|
}
|
|
return contents
|
|
}
|