from core.agents.base import BaseAgent from core.agents.convo import AgentConvo from core.agents.response import AgentResponse from core.db.models import Complexity from core.llm.parser import StringParser from core.telemetry import telemetry from core.templates.example_project import ( EXAMPLE_PROJECT_ARCHITECTURE, EXAMPLE_PROJECT_DESCRIPTION, EXAMPLE_PROJECT_PLAN, ) # If the project description is less than this, perform an analysis using LLM ANALYZE_THRESHOLD = 1500 # URL to the wiki page with tips on how to write a good project description INITIAL_PROJECT_HOWTO_URL = ( "https://github.com/Pythagora-io/gpt-pilot/wiki/How-to-write-a-good-initial-project-description" ) class SpecWriter(BaseAgent): agent_type = "spec-writer" display_name = "Spec Writer" async def run(self) -> AgentResponse: response = await self.ask_question( "Describe your app in as much detail as possible", allow_empty=False, buttons={"example": "Start an example project"}, ) if response.cancelled: return AgentResponse.error(self, "No project description") if response.button == "example": self.prepare_example_project() return AgentResponse.done(self) spec = response.text complexity = await self.check_prompt_complexity(spec) if len(spec) < ANALYZE_THRESHOLD and complexity != Complexity.SIMPLE: spec = await self.analyze_spec(spec) spec = await self.review_spec(spec) self.next_state.specification = self.current_state.specification.clone() self.next_state.specification.description = spec self.next_state.specification.complexity = complexity telemetry.set("initial_prompt", spec) telemetry.set("is_complex_app", complexity != Complexity.SIMPLE) return AgentResponse.done(self) async def check_prompt_complexity(self, prompt: str) -> str: await self.send_message("Checking the complexity of the prompt ...") llm = self.get_llm() convo = AgentConvo(self).template("prompt_complexity", prompt=prompt) llm_response: str = await llm(convo, temperature=0, parser=StringParser()) return llm_response.lower() def prepare_example_project(self): spec = self.current_state.specification.clone() spec.description = EXAMPLE_PROJECT_DESCRIPTION spec.architecture = EXAMPLE_PROJECT_ARCHITECTURE["architecture"] spec.system_dependencies = EXAMPLE_PROJECT_ARCHITECTURE["system_dependencies"] spec.package_dependencies = EXAMPLE_PROJECT_ARCHITECTURE["package_dependencies"] spec.template = EXAMPLE_PROJECT_ARCHITECTURE["template"] spec.complexity = Complexity.SIMPLE telemetry.set("initial_prompt", spec.description.strip()) telemetry.set("is_complex_app", False) telemetry.set("template", spec.template) telemetry.set( "architecture", { "architecture": spec.architecture, "system_dependencies": spec.system_dependencies, "package_dependencies": spec.package_dependencies, }, ) self.next_state.specification = spec self.next_state.epics = [ { "name": "Initial Project", "description": EXAMPLE_PROJECT_DESCRIPTION, "completed": False, "complexity": Complexity.SIMPLE, } ] self.next_state.tasks = EXAMPLE_PROJECT_PLAN async def analyze_spec(self, spec: str) -> str: msg = ( "Your project description seems a bit short. " "The better you can describe the project, the better GPT Pilot will understand what you'd like to build.\n\n" f"Here are some tips on how to better describe the project: {INITIAL_PROJECT_HOWTO_URL}\n\n" "Let's start by refining your project idea:" ) await self.send_message(msg) llm = self.get_llm() convo = AgentConvo(self).template("ask_questions").user(spec) while True: response: str = await llm(convo) if len(response) > 500: # The response is too long for it to be a question, assume it's the spec confirm = await self.ask_question( ( "Can we proceed with this project description? If so, just press ENTER. " "Otherwise, please tell me what's missing or what you'd like to add." ), allow_empty=True, buttons={"continue": "Continue"}, ) if confirm.cancelled or confirm.button == "continue" or confirm.text == "": return spec convo.user(confirm.text) else: convo.assistant(response) user_response = await self.ask_question( response, buttons={"skip": "Skip questions"}, ) if user_response.cancelled or user_response.button == "skip": convo.user( "This is enough clarification, you have all the information. " "Please output the spec now, without additional comments or questions." ) response: str = await llm(convo) return response convo.user(user_response.text) async def review_spec(self, spec: str) -> str: convo = AgentConvo(self).template("review_spec", spec=spec) llm = self.get_llm() llm_response: str = await llm(convo, temperature=0) additional_info = llm_response.strip() if additional_info: spec += "\nAdditional info/examples:\n" + additional_info return spec