mirror of
https://github.com/Pythagora-io/gpt-pilot.git
synced 2026-01-09 13:17:55 -05:00
399 lines
13 KiB
Python
399 lines
13 KiB
Python
import sys
|
|
import time
|
|
import traceback
|
|
from copy import deepcopy
|
|
from os import getenv
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import httpx
|
|
|
|
from core.config import get_config
|
|
from core.config.user_settings import settings
|
|
from core.config.version import get_version
|
|
from core.log import get_logger
|
|
|
|
log = get_logger(__name__)
|
|
|
|
LARGE_REQUEST_THRESHOLD = 50000 # tokens
|
|
SLOW_REQUEST_THRESHOLD = 300 # seconds
|
|
|
|
|
|
class Telemetry:
|
|
"""
|
|
Pythagora telemetry data collection.
|
|
|
|
This class is a singleton, use the `telemetry` global variable to access it:
|
|
|
|
>>> from core.telemetry import telemetry
|
|
|
|
To record start of application creation process:
|
|
|
|
>>> telemetry.start()
|
|
|
|
To record data or increase counters:
|
|
|
|
>>> telemetry.set("model", "gpt-4")
|
|
>>> telemetry.inc("num_llm_requests", 5)
|
|
|
|
To stop recording and send the data:
|
|
|
|
>>> telemetry.stop()
|
|
>>> await telemetry.send()
|
|
|
|
Note: all methods are no-ops if telemetry is not enabled.
|
|
"""
|
|
|
|
MAX_CRASH_FRAMES = 3
|
|
|
|
def __init__(self):
|
|
self.enabled = False
|
|
self.telemetry_id = None
|
|
self.endpoint = None
|
|
self.clear_data()
|
|
|
|
if settings.telemetry is not None:
|
|
self.enabled = settings.telemetry.enabled
|
|
self.telemetry_id = settings.telemetry.id
|
|
self.endpoint = settings.telemetry.endpoint
|
|
|
|
if self.enabled:
|
|
log.debug(f"Telemetry enabled (id={self.telemetry_id}), configure or disable it in {settings.config_path}")
|
|
|
|
def clear_data(self):
|
|
"""
|
|
Reset all telemetry data to default values.
|
|
"""
|
|
config = get_config()
|
|
|
|
self.data = {
|
|
# System platform
|
|
"platform": sys.platform,
|
|
# Python version used for GPT Pilot
|
|
"python_version": sys.version,
|
|
# GPT Pilot version
|
|
"pilot_version": get_version(),
|
|
# Pythagora VSCode Extension version
|
|
"extension_version": None,
|
|
# Is extension used
|
|
"is_extension": False,
|
|
# The default LLM provider and model
|
|
"provider": config.agent["default"].provider.value,
|
|
"model": config.agent["default"].model,
|
|
# Initial prompt
|
|
"initial_prompt": None,
|
|
# App complexity
|
|
"is_complex_app": None,
|
|
# Optional template used for the project
|
|
"template": None,
|
|
# Optional, example project selected by the user
|
|
"example_project": None,
|
|
# Optional user contact email
|
|
"user_contact": None,
|
|
# Unique project ID (app_id)
|
|
"app_id": None,
|
|
# Project architecture
|
|
"architecture": None,
|
|
# Documentation sets used for a given task
|
|
"docsets_used": [],
|
|
# Number of documentation snippets stored for a given task
|
|
"doc_snippets_stored": 0,
|
|
}
|
|
if sys.platform == "linux":
|
|
try:
|
|
import distro
|
|
|
|
self.data["linux_distro"] = distro.name(pretty=True)
|
|
except Exception as err:
|
|
log.debug(f"Error getting Linux distribution info: {err}", exc_info=True)
|
|
self.clear_counters()
|
|
|
|
def clear_counters(self):
|
|
"""
|
|
Reset telemetry counters while keeping the base data.
|
|
"""
|
|
self.data.update(
|
|
{
|
|
# Number of LLM requests made
|
|
"num_llm_requests": 0,
|
|
# Number of LLM requests that resulted in an error
|
|
"num_llm_errors": 0,
|
|
# Number of tokens used for LLM requests
|
|
"num_llm_tokens": 0,
|
|
# Number of development steps
|
|
"num_steps": 0,
|
|
# Number of commands run during development
|
|
"num_commands": 0,
|
|
# Number of times a human input was required during development
|
|
"num_inputs": 0,
|
|
# Number of files in the project
|
|
"num_files": 0,
|
|
# Total number of lines in the project
|
|
"num_lines": 0,
|
|
# Number of tasks started during development
|
|
"num_tasks": 0,
|
|
# Number of seconds elapsed during development
|
|
"elapsed_time": 0,
|
|
# Total number of lines created by GPT Pilot
|
|
"created_lines": 0,
|
|
# End result of development:
|
|
# - success:initial-project
|
|
# - success:feature
|
|
# - success:exit
|
|
# - failure
|
|
# - failure:api-error
|
|
# - interrupt
|
|
"end_result": None,
|
|
# Whether the project is continuation of a previous session
|
|
"is_continuation": False,
|
|
# Optional user feedback
|
|
"user_feedback": None,
|
|
# If GPT Pilot crashes, record diagnostics
|
|
"crash_diagnostics": None,
|
|
# Statistics for large requests
|
|
"large_requests": None,
|
|
# Statistics for slow requests
|
|
"slow_requests": None,
|
|
}
|
|
)
|
|
self.start_time = None
|
|
self.end_time = None
|
|
self.large_requests = []
|
|
self.slow_requests = []
|
|
|
|
def set(self, name: str, value: Any):
|
|
"""
|
|
Set a telemetry data field to a value.
|
|
|
|
:param name: name of the telemetry data field
|
|
:param value: value to set the field to
|
|
|
|
Note: only known data fields may be set, see `Telemetry.clear_data()` for a list.
|
|
"""
|
|
if name not in self.data:
|
|
log.error(f"Telemetry.record(): ignoring unknown telemetry data field: {name}")
|
|
return
|
|
|
|
self.data[name] = value
|
|
|
|
def inc(self, name: str, value: int = 1):
|
|
"""
|
|
Increase a telemetry data field by a value.
|
|
|
|
:param name: name of the telemetry data field
|
|
:param value: value to increase the field by (default: 1)
|
|
|
|
Note: only known data fields may be increased, see `Telemetry.clear_data()` for a list.
|
|
"""
|
|
if name not in self.data:
|
|
log.error(f"Telemetry.increase(): ignoring unknown telemetry data field: {name}")
|
|
return
|
|
|
|
self.data[name] += value
|
|
|
|
def start(self):
|
|
"""
|
|
Record start of application creation process.
|
|
"""
|
|
self.start_time = time.time()
|
|
self.end_time = None
|
|
|
|
def stop(self):
|
|
"""
|
|
Record end of application creation process.
|
|
"""
|
|
if self.start_time is None:
|
|
log.error("Telemetry.stop(): cannot stop telemetry, it was never started")
|
|
return
|
|
|
|
self.end_time = time.time()
|
|
self.data["elapsed_time"] = int(self.end_time - self.start_time)
|
|
|
|
def record_crash(
|
|
self,
|
|
exception: Exception,
|
|
end_result: str = "failure",
|
|
) -> str:
|
|
"""
|
|
Record crash diagnostics.
|
|
|
|
The formatted stack trace only contains frames from the `core` package
|
|
of gpt-pilot.
|
|
|
|
:param exception: exception that caused the crash
|
|
:param end_result: end result of the application (default: "failure")
|
|
:return: formatted stack trace of the exception
|
|
|
|
Records the following crash diagnostics data:
|
|
* formatted stack trace
|
|
* exception (class name and message)
|
|
* file:line for the last (innermost) 3 frames of the stack trace, only counting
|
|
the frames from the `core` package.
|
|
"""
|
|
self.set("end_result", end_result)
|
|
|
|
root_dir = Path(__file__).parent.parent.parent
|
|
exception_class_name = exception.__class__.__name__
|
|
exception_message = str(exception)
|
|
|
|
frames = []
|
|
info = []
|
|
|
|
for frame in traceback.extract_tb(exception.__traceback__):
|
|
try:
|
|
file_path = Path(frame.filename).absolute().relative_to(root_dir).as_posix()
|
|
except ValueError:
|
|
# outside of root_dir
|
|
continue
|
|
|
|
if not file_path.startswith("core/"):
|
|
continue
|
|
|
|
frames.append(
|
|
{
|
|
"file": file_path,
|
|
"line": frame.lineno,
|
|
"name": frame.name,
|
|
"code": frame.line,
|
|
}
|
|
)
|
|
info.append(f"File `{file_path}`, line {frame.lineno}, in {frame.name}\n {frame.line}")
|
|
|
|
frames.reverse()
|
|
stack_trace = "\n".join(info) + f"\n{exception.__class__.__name__}: {str(exception)}"
|
|
|
|
self.data["crash_diagnostics"] = {
|
|
"stack_trace": stack_trace,
|
|
"exception_class": exception_class_name,
|
|
"exception_message": exception_message,
|
|
"frames": frames[: self.MAX_CRASH_FRAMES],
|
|
}
|
|
return stack_trace
|
|
|
|
def record_llm_request(
|
|
self,
|
|
tokens: int,
|
|
elapsed_time: int,
|
|
is_error: bool,
|
|
):
|
|
"""
|
|
Record an LLM request.
|
|
|
|
:param tokens: number of tokens in the request
|
|
:param elapsed_time: time elapsed for the request
|
|
:param is_error: whether the request resulted in an error
|
|
"""
|
|
self.inc("num_llm_requests")
|
|
|
|
if is_error:
|
|
self.inc("num_llm_errors")
|
|
else:
|
|
self.inc("num_llm_tokens", tokens)
|
|
|
|
if tokens > LARGE_REQUEST_THRESHOLD:
|
|
self.large_requests.append(tokens)
|
|
if elapsed_time > SLOW_REQUEST_THRESHOLD:
|
|
self.slow_requests.append(elapsed_time)
|
|
|
|
def calculate_statistics(self):
|
|
"""
|
|
Calculate statistics for large and slow requests.
|
|
"""
|
|
n_large = len(self.large_requests)
|
|
n_slow = len(self.slow_requests)
|
|
|
|
self.data["large_requests"] = {
|
|
"num_requests": n_large,
|
|
"min_tokens": min(self.large_requests) if n_large > 0 else None,
|
|
"max_tokens": max(self.large_requests) if n_large > 0 else None,
|
|
"avg_tokens": sum(self.large_requests) // n_large if n_large > 0 else None,
|
|
"median_tokens": sorted(self.large_requests)[n_large // 2] if n_large > 0 else None,
|
|
}
|
|
self.data["slow_requests"] = {
|
|
"num_requests": n_slow,
|
|
"min_time": min(self.slow_requests) if n_slow > 0 else None,
|
|
"max_time": max(self.slow_requests) if n_slow > 0 else None,
|
|
"avg_time": sum(self.slow_requests) // n_slow if n_slow > 0 else None,
|
|
"median_time": sorted(self.slow_requests)[n_slow // 2] if n_slow > 0 else None,
|
|
}
|
|
|
|
async def send(self, event: str = "pilot-telemetry"):
|
|
"""
|
|
Send telemetry data to the phone-home endpoint.
|
|
|
|
Note: this method clears all telemetry data after sending it.
|
|
"""
|
|
if not self.enabled or getenv("DISABLE_TELEMETRY"):
|
|
log.debug("Telemetry.send(): telemetry is disabled, not sending data")
|
|
return
|
|
|
|
if self.endpoint is None:
|
|
log.error("Telemetry.send(): cannot send telemetry, no endpoint configured")
|
|
return
|
|
|
|
if self.start_time is not None and self.end_time is None:
|
|
self.stop()
|
|
|
|
self.calculate_statistics()
|
|
payload = {
|
|
"pathId": self.telemetry_id,
|
|
"event": event,
|
|
"data": self.data,
|
|
}
|
|
|
|
log.debug(f"Telemetry.send(): sending telemetry data to {self.endpoint}")
|
|
try:
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.post(self.endpoint, json=payload)
|
|
response.raise_for_status()
|
|
self.clear_counters()
|
|
self.set("is_continuation", True)
|
|
except httpx.RequestError as e:
|
|
log.error(f"Telemetry.send(): failed to send telemetry data: {e}", exc_info=True)
|
|
|
|
def get_project_stats(self) -> dict:
|
|
return {
|
|
"num_lines": self.data["num_lines"],
|
|
"num_files": self.data["num_files"],
|
|
"num_tokens": self.data["num_llm_tokens"],
|
|
}
|
|
|
|
async def trace_code_event(self, name: str, data: dict):
|
|
"""
|
|
Record a code event to trace potential logic bugs.
|
|
|
|
:param name: name of the event
|
|
:param data: data to send with the event
|
|
"""
|
|
if not self.enabled or getenv("DISABLE_TELEMETRY"):
|
|
return
|
|
|
|
data = deepcopy(data)
|
|
for item in ["app_id", "user_contact", "platform", "pilot_version", "model"]:
|
|
data[item] = self.data[item]
|
|
|
|
payload = {
|
|
"pathId": self.telemetry_id,
|
|
"event": f"trace-{name}",
|
|
"data": data,
|
|
}
|
|
|
|
log.debug(f"Sending trace event {name} to {self.endpoint}: {repr(payload)}")
|
|
|
|
try:
|
|
async with httpx.AsyncClient() as client:
|
|
await client.post(self.endpoint, json=payload)
|
|
except httpx.RequestError as e:
|
|
log.error(f"Failed to send trace event {name}: {e}", exc_info=True)
|
|
|
|
async def trace_loop(self, name: str, task_with_loop: dict):
|
|
payload = deepcopy(self.data)
|
|
payload["task_with_loop"] = task_with_loop
|
|
await self.trace_code_event(name, payload)
|
|
|
|
|
|
telemetry = Telemetry()
|
|
|
|
|
|
__all__ = ["telemetry"]
|