mirror of
https://github.com/Pythagora-io/gpt-pilot.git
synced 2026-01-08 12:53:50 -05:00
This is a complete rewrite of the GPT Pilot core, from the ground up, making the agentic architecture front and center, and also fixing some long-standing problems with the database architecture that weren't feasible to solve without breaking compatibility. As the database structure and config file syntax have changed, we have automatic imports for projects and current configs, see the README.md file for details. This also relicenses the project to FSL-1.1-MIT license.
94 lines
2.9 KiB
Python
94 lines
2.9 KiB
Python
import datetime
|
|
from typing import Optional
|
|
|
|
import tiktoken
|
|
from groq import AsyncGroq, RateLimitError
|
|
from httpx import Timeout
|
|
|
|
from core.config import LLMProvider
|
|
from core.llm.base import BaseLLMClient
|
|
from core.llm.convo import Convo
|
|
from core.log import get_logger
|
|
|
|
log = get_logger(__name__)
|
|
tokenizer = tiktoken.get_encoding("cl100k_base")
|
|
|
|
|
|
class GroqClient(BaseLLMClient):
|
|
provider = LLMProvider.GROQ
|
|
|
|
def _init_client(self):
|
|
self.client = AsyncGroq(
|
|
api_key=self.config.api_key,
|
|
base_url=self.config.base_url,
|
|
timeout=Timeout(
|
|
max(self.config.connect_timeout, self.config.read_timeout),
|
|
connect=self.config.connect_timeout,
|
|
read=self.config.read_timeout,
|
|
),
|
|
)
|
|
|
|
async def _make_request(
|
|
self,
|
|
convo: Convo,
|
|
temperature: Optional[float] = None,
|
|
json_mode: bool = False,
|
|
) -> tuple[str, int, int]:
|
|
completion_kwargs = {
|
|
"model": self.config.model,
|
|
"messages": convo.messages,
|
|
"temperature": self.config.temperature if temperature is None else temperature,
|
|
"stream": True,
|
|
}
|
|
if json_mode:
|
|
completion_kwargs["response_format"] = {"type": "json_object"}
|
|
|
|
stream = await self.client.chat.completions.create(**completion_kwargs)
|
|
response = []
|
|
prompt_tokens = 0
|
|
completion_tokens = 0
|
|
|
|
async for chunk in stream:
|
|
if not chunk.choices:
|
|
continue
|
|
|
|
content = chunk.choices[0].delta.content
|
|
if not content:
|
|
continue
|
|
|
|
response.append(content)
|
|
if self.stream_handler:
|
|
await self.stream_handler(content)
|
|
|
|
response_str = "".join(response)
|
|
|
|
# Tell the stream handler we're done
|
|
if self.stream_handler:
|
|
await self.stream_handler(None)
|
|
|
|
if prompt_tokens == 0 and completion_tokens == 0:
|
|
# FIXME: Here we estimate Groq tokens using the same method as for OpenAI....
|
|
# See https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken
|
|
prompt_tokens = sum(3 + len(tokenizer.encode(msg["content"])) for msg in convo.messages)
|
|
completion_tokens = len(tokenizer.encode(response_str))
|
|
|
|
return response_str, prompt_tokens, completion_tokens
|
|
|
|
def rate_limit_sleep(self, err: RateLimitError) -> Optional[datetime.timedelta]:
|
|
"""
|
|
Groq rate limits docs: https://console.groq.com/docs/rate-limits
|
|
|
|
Groq includes `retry-after` header when 429 RateLimitError is
|
|
thrown, so we use that instead of calculating our own backoff time.
|
|
"""
|
|
|
|
headers = err.response.headers
|
|
if "retry-after" not in headers:
|
|
return None
|
|
|
|
retry_after = int(err.response.headers["retry-after"])
|
|
return datetime.timedelta(seconds=retry_after)
|
|
|
|
|
|
__all__ = ["GroqClient"]
|