Files
gpt-pilot/core/agents/developer.py
2025-03-25 15:08:05 +01:00

379 lines
15 KiB
Python

import json
from enum import Enum
from typing import Annotated, Literal, Union
from uuid import uuid4
from pydantic import BaseModel, Field
from core.agents.base import BaseAgent
from core.agents.convo import AgentConvo
from core.agents.mixins import ChatWithBreakdownMixin, RelevantFilesMixin
from core.agents.response import AgentResponse
from core.config import PARSE_TASK_AGENT_NAME, TASK_BREAKDOWN_AGENT_NAME
from core.config.actions import (
DEV_TASK_BREAKDOWN,
DEV_TASK_REVIEW_FEEDBACK,
DEV_TASK_STARTING,
DEV_TROUBLESHOOT,
DEV_WAIT_TEST,
)
from core.db.models.project_state import IterationStatus, TaskStatus
from core.db.models.specification import Complexity
from core.llm.parser import JSONParser
from core.log import get_logger
from core.telemetry import telemetry
from core.ui.base import ProjectStage
log = get_logger(__name__)
class StepType(str, Enum):
COMMAND = "command"
SAVE_FILE = "save_file"
HUMAN_INTERVENTION = "human_intervention"
UTILITY_FUNCTION = "utility_function"
class CommandOptions(BaseModel):
command: str = Field(description="Command to run")
timeout: int = Field(description="Timeout in seconds")
success_message: str = ""
class SaveFileOptions(BaseModel):
path: str
class SaveFileStep(BaseModel):
type: Literal[StepType.SAVE_FILE] = StepType.SAVE_FILE
save_file: SaveFileOptions
class CommandStep(BaseModel):
type: Literal[StepType.COMMAND] = StepType.COMMAND
command: CommandOptions
class HumanInterventionStep(BaseModel):
type: Literal[StepType.HUMAN_INTERVENTION] = StepType.HUMAN_INTERVENTION
human_intervention_description: str
class UtilityFunction(BaseModel):
type: Literal[StepType.UTILITY_FUNCTION] = StepType.UTILITY_FUNCTION
file: str
function_name: str
description: str
return_value: str
input_value: str
status: Literal["mocked", "implemented"]
Step = Annotated[
Union[SaveFileStep, CommandStep, HumanInterventionStep, UtilityFunction],
Field(discriminator="type"),
]
class TaskSteps(BaseModel):
steps: list[Step]
class Developer(ChatWithBreakdownMixin, RelevantFilesMixin, BaseAgent):
agent_type = "developer"
display_name = "Developer"
async def run(self) -> AgentResponse:
if self.current_state.current_step and self.current_state.current_step.get("type") == "utility_function":
return await self.update_knowledge_base()
if not self.current_state.unfinished_tasks:
log.warning("No unfinished tasks found, nothing to do (why am I called? is this a bug?)")
return AgentResponse.done(self)
if self.current_state.unfinished_iterations:
return await self.breakdown_current_iteration()
# By default, we want to ask the user if they want to run the task,
# except in certain cases (such as they've just edited it).
# The check for docs is here to prevent us from asking the user whether we should
# run the task twice - we'll only ask if we haven't yet checked for docs.
if not self.current_state.current_task.get("run_always", False) and self.current_state.docs is None:
if not await self.ask_to_execute_task():
return AgentResponse.done(self)
if self.current_state.docs is None and self.current_state.specification.complexity != Complexity.SIMPLE:
# We check for external docs here, to make sure we only fetch the docs
# if the task is actually being done.
return AgentResponse.external_docs_required(self)
return await self.breakdown_current_task()
async def breakdown_current_iteration(self) -> AgentResponse:
"""
Breaks down current iteration or task review into steps.
:return: AgentResponse.done(self) when the breakdown is done
"""
current_task = self.current_state.current_task
if self.current_state.current_iteration["status"] in (
IterationStatus.AWAITING_BUG_FIX,
IterationStatus.AWAITING_LOGGING,
):
iteration = self.current_state.current_iteration
description = iteration["bug_hunting_cycles"][-1]["human_readable_instructions"]
user_feedback = iteration["user_feedback"]
source = "bug_hunt"
n_tasks = len(self.next_state.iterations)
log.debug(f"Breaking down the logging cycle {description}")
else:
iteration = self.current_state.current_iteration
if iteration is None:
log.error("Iteration breakdown called but there's no current iteration or task review, possible bug?")
return AgentResponse.done(self)
description = iteration["description"]
user_feedback = iteration["user_feedback"]
source = "troubleshooting"
n_tasks = len(self.next_state.iterations)
log.debug(f"Breaking down the iteration {description}")
if self.current_state.files and self.current_state.relevant_files is None:
await self.get_relevant_files_parallel(user_feedback, description)
await self.ui.send_task_progress(
n_tasks, # iterations and reviews can be created only one at a time, so we are always on last one
n_tasks,
current_task["description"],
source,
"in-progress",
self.current_state.get_source_index(source),
self.current_state.tasks,
)
llm = self.get_llm(PARSE_TASK_AGENT_NAME)
# FIXME: In case of iteration, parse_task depends on the context (files, tasks, etc) set there.
# Ideally this prompt would be self-contained.
convo = (
AgentConvo(self).template("parse_task", implementation_instructions=description).require_schema(TaskSteps)
)
response: TaskSteps = await llm(convo, parser=JSONParser(TaskSteps), temperature=0)
self.set_next_steps(response, source)
if iteration:
if "status" not in iteration or (
iteration["status"] in (IterationStatus.AWAITING_USER_TEST, IterationStatus.AWAITING_BUG_REPRODUCTION)
):
# This is just a support for old iterations that don't have status
self.next_state.complete_iteration()
self.next_state.action = DEV_TROUBLESHOOT.format(len(self.current_state.iterations))
elif iteration["status"] == IterationStatus.IMPLEMENT_SOLUTION:
# If the user requested a change, then, we'll implement it and go straight back to testing
self.next_state.complete_iteration()
self.next_state.action = DEV_TROUBLESHOOT.format(len(self.current_state.iterations))
elif iteration["status"] == IterationStatus.AWAITING_BUG_FIX:
# If bug fixing is done, ask user to test again
self.next_state.action = DEV_WAIT_TEST
self.next_state.current_iteration["status"] = IterationStatus.AWAITING_USER_TEST
elif iteration["status"] == IterationStatus.AWAITING_LOGGING:
# If logging is done, ask user to reproduce the bug
self.next_state.current_iteration["status"] = IterationStatus.AWAITING_BUG_REPRODUCTION
else:
self.next_state.action = DEV_TASK_REVIEW_FEEDBACK
current_task_index = self.current_state.tasks.index(current_task)
self.next_state.tasks[current_task_index] = {
**current_task,
}
self.next_state.flag_tasks_as_modified()
return AgentResponse.done(self)
async def breakdown_current_task(self) -> AgentResponse:
current_task = self.current_state.current_task
current_task_index = self.current_state.tasks.index(current_task)
self.next_state.action = DEV_TASK_BREAKDOWN.format(current_task_index + 1)
source = self.current_state.current_epic.get("source", "app")
await self.ui.send_task_progress(
self.current_state.tasks.index(current_task) + 1,
len(self.current_state.tasks),
current_task["description"],
source,
"in-progress",
self.current_state.get_source_index(source),
self.current_state.tasks,
)
log.debug(f"Breaking down the current task: {current_task['description']}")
log.debug(f"Current state files: {len(self.current_state.files)}, relevant {self.current_state.relevant_files}")
# Check which files are relevant to the current task
await self.get_relevant_files_parallel()
current_task_index = self.current_state.tasks.index(current_task)
await self.send_message("Thinking about how to implement this task ...")
await self.ui.start_breakdown_stream()
related_api_endpoints = current_task.get("related_api_endpoints", [])
llm = self.get_llm(TASK_BREAKDOWN_AGENT_NAME, stream_output=True)
# TODO: Temp fix for old projects
if not (
related_api_endpoints
and len(related_api_endpoints) > 0
and all(isinstance(api, dict) and "endpoint" in api for api in related_api_endpoints)
):
related_api_endpoints = []
convo = AgentConvo(self).template(
"breakdown",
task=current_task,
iteration=None,
current_task_index=current_task_index,
docs=self.current_state.docs,
related_api_endpoints=related_api_endpoints,
)
response: str = await llm(convo)
convo.assistant(response)
response = await self.chat_with_breakdown(convo, response)
self.next_state.tasks[current_task_index] = {
**current_task,
"instructions": response,
}
self.next_state.flag_tasks_as_modified()
llm = self.get_llm(PARSE_TASK_AGENT_NAME)
convo = AgentConvo(self).template("parse_task", implementation_instructions=response).require_schema(TaskSteps)
response: TaskSteps = await llm(convo, parser=JSONParser(TaskSteps), temperature=0)
# There might be state leftovers from previous tasks that we need to clean here
self.next_state.modified_files = {}
self.set_next_steps(response, source)
self.next_state.action = f"Task #{current_task_index + 1} start"
await telemetry.trace_code_event(
"task-start",
{
"task_index": current_task_index + 1,
"num_tasks": len(self.current_state.tasks),
"num_epics": len(self.current_state.epics),
},
)
return AgentResponse.done(self)
def set_next_steps(self, response: TaskSteps, source: str):
# For logging/debugging purposes, we don't want to remove the finished steps
# until we're done with the task.
unique_steps = self.remove_duplicate_steps({**response.model_dump()})
finished_steps = [step for step in self.current_state.steps if step["completed"]]
self.next_state.steps = finished_steps + [
{
"id": uuid4().hex,
"completed": False,
"source": source,
"iteration_index": len(self.current_state.iterations),
**step,
}
for step in unique_steps["steps"]
]
log.debug(f"Next steps: {self.next_state.unfinished_steps}")
def remove_duplicate_steps(self, data):
unique_steps = []
# Process steps attribute
for step in data["steps"]:
if isinstance(step, SaveFileStep) and any(
s["type"] == "save_file" and s["save_file"]["path"] == step["save_file"]["path"] for s in unique_steps
):
continue
unique_steps.append(step)
# Update steps attribute
data["steps"] = unique_steps
# Use the serializable_steps for JSON dumping
data["original_response"] = json.dumps(unique_steps, indent=2)
return data
async def ask_to_execute_task(self) -> bool:
"""
Asks the user to approve, skip or edit the current task.
If task is edited, the method returns False so that the changes are saved. The
Orchestrator will rerun the agent on the next iteration.
:return: True if the task should be executed as is, False if the task is skipped or edited
"""
buttons = {"yes": "Yes", "edit": "Edit Task"}
if len(self.current_state.tasks) > 1:
buttons["skip"] = "Skip Task"
description = self.current_state.current_task["description"]
task_index = self.current_state.tasks.index(self.current_state.current_task) + 1
await self.ui.send_project_stage(
{
"stage": ProjectStage.STARTING_TASK,
"task_index": task_index,
}
)
self.next_state.action = DEV_TASK_STARTING.format(task_index)
await self.send_message(f"Starting task #{task_index} with the description:\n\n" + description)
if self.current_state.run_command:
await self.ui.send_run_command(self.current_state.run_command)
user_response = await self.ask_question(
"Do you want to execute the above task?",
buttons=buttons,
default="yes",
buttons_only=True,
hint=description,
)
if user_response.button == "yes":
# Execute the task as is
return True
if user_response.cancelled or user_response.button == "skip":
log.info(f"Skipping task: {description}")
self.next_state.current_task["instructions"] = "(skipped on user request)"
self.next_state.set_current_task_status(TaskStatus.SKIPPED)
await self.send_message("Skipping task...")
# We're done here, and will pick up the next task (if any) on the next run
return False
user_response = await self.ask_question(
"Edit the task description:",
buttons={
# FIXME: must be lowercase becase VSCode doesn't recognize it otherwise. Needs a fix in the extension
"continue": "continue",
"cancel": "Cancel",
},
default="continue",
initial_text=description,
)
if user_response.button == "cancel" or user_response.cancelled:
# User hasn't edited the task, so we can execute it immediately as is
return await self.ask_to_execute_task()
self.next_state.current_task["description"] = user_response.text
self.next_state.current_task["run_always"] = True
self.next_state.relevant_files = None
log.info(f"Task description updated to: {user_response.text}")
# Orchestrator will rerun us with the new task description
return False
async def update_knowledge_base(self):
"""
Update the knowledge base with the current task and steps.
"""
await self.state_manager.update_utility_functions(self.current_state.current_step)
self.next_state.complete_step("utility_function")
return AgentResponse.done(self)