mirror of
https://github.com/acon96/home-llm.git
synced 2026-01-08 21:28:05 -05:00
clean up training folder + update TODO
This commit is contained in:
3
train/README.md
Normal file
3
train/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# Training Home LLM Models
|
||||
|
||||
This directory contains resources and instructions for training Home LLM models. Currently, it is recommended to use axolotl via a Docker container for training. There are various examples of model configurations provided in the `config/` folder. Additionally, you can refer to the [Axolotl documentation](https://docs.axolotl.ai/) for more detailed guidance on setting up and running training sessions.
|
||||
369
train/evaluate.py
Normal file
369
train/evaluate.py
Normal file
@@ -0,0 +1,369 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse, os, re, json, csv, random
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
||||
from peft import PeftConfig, PeftModel
|
||||
from tqdm import tqdm
|
||||
|
||||
torch.set_default_device("cuda")
|
||||
|
||||
CTX_SIZE = 2048
|
||||
TRUST_REMOTE_CODE = False
|
||||
|
||||
|
||||
"""
|
||||
python3 evaluate.py stablehome-1_6b-rev3 --batch-size 8 --all-checkpoints
|
||||
python3 evaluate.py tinyhome-rev1 --batch-size 12 --all-checkpoints
|
||||
python3 evaluate.py stablehome-3b-rev6 --batch-size 4 --lora --overwrite
|
||||
"""
|
||||
|
||||
service_call_regex = re.compile(r"```homeassistant\n([\S \t\n]*?)```")
|
||||
json_regex = re.compile(r"({[\S \t]*?})")
|
||||
service_names_regex = re.compile(r"\b\w+\.\w+\([^)]*\)")
|
||||
entity_ids_regex = re.compile(r"\b\w+\.\w+(?=\s'|\s=)")
|
||||
|
||||
try:
|
||||
with open("custom_components/llama_conversation/in_context_examples.csv", encoding="utf-8-sig") as f:
|
||||
in_context_examples = list(csv.DictReader(f))
|
||||
except:
|
||||
in_context_examples = []
|
||||
|
||||
def icl_example_generator(num_examples, entity_names, service_names):
|
||||
entity_domains = set([x.split(".")[0] for x in entity_names])
|
||||
entity_names = entity_names[:]
|
||||
|
||||
# filter out examples for disabled services
|
||||
selected_in_context_examples = []
|
||||
for x in in_context_examples:
|
||||
if x["service"] in service_names and x["service"].split(".")[0] in entity_domains:
|
||||
selected_in_context_examples.append(x)
|
||||
|
||||
# if we filtered everything then just sample randomly
|
||||
if len(selected_in_context_examples) == 0:
|
||||
selected_in_context_examples = in_context_examples[:]
|
||||
|
||||
random.shuffle(selected_in_context_examples)
|
||||
random.shuffle(entity_names)
|
||||
|
||||
num_examples_to_generate = min(num_examples, len(selected_in_context_examples))
|
||||
if num_examples_to_generate < num_examples:
|
||||
print(f"Attempted to generate {num_examples} ICL examples for conversation, but only {len(selected_in_context_examples)} are available!")
|
||||
|
||||
results = []
|
||||
while len(results) < num_examples_to_generate:
|
||||
if len(selected_in_context_examples) == 0:
|
||||
break
|
||||
|
||||
chosen_example = selected_in_context_examples.pop()
|
||||
chosen_service = chosen_example["service"]
|
||||
potential_devices = [ x for x in entity_names if x.split(".")[0] == chosen_service.split(".")[0] ]
|
||||
|
||||
if len(potential_devices) == 0:
|
||||
continue
|
||||
else:
|
||||
example = {
|
||||
"to_say": chosen_example["response"],
|
||||
"service": chosen_service,
|
||||
"target_device": potential_devices[0],
|
||||
}
|
||||
results.insert(0, json.dumps(example))
|
||||
|
||||
return "\n".join(results)
|
||||
|
||||
def tokenize(tokenizer, prompt):
|
||||
return tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=CTX_SIZE)
|
||||
|
||||
def generate(model, tokenizer, prompts):
|
||||
inputs = tokenize(tokenizer, prompts)
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(**inputs)
|
||||
text = tokenizer.batch_decode(outputs)
|
||||
return text
|
||||
|
||||
def evaluate(output_folder, trained_model, trained_tokenizer, dataset, batch_size, use_icl):
|
||||
# split = trained_tokenizer.apply_chat_template(conversation=[{"role": "assistant", "content": r"%%%%%%%%%%%%%%%%"}], tokenize=False).split( r"%%%%%%%%%%%%%%%%")[0].replace(trained_tokenizer.bos_token, "")
|
||||
split = "<|start_header_id|>assistant<|end_header_id|>"
|
||||
|
||||
print("Evaluating...")
|
||||
correct_answers = 0
|
||||
total_answers = 0
|
||||
color_mismatches = 0
|
||||
|
||||
# pre-allocate cuda buffers
|
||||
inputs = trained_tokenizer([""] * batch_size, return_tensors="pt", max_length=CTX_SIZE, padding="max_length", truncation=True)
|
||||
inputs = {k: v.to(trained_model.device) for k, v in inputs.items()}
|
||||
with torch.no_grad():
|
||||
outputs = trained_model(**inputs)
|
||||
|
||||
failed_examples = []
|
||||
with tqdm(total=len(dataset), desc="Accuracy") as pbar:
|
||||
for batch_start in range(0, len(dataset), batch_size):
|
||||
batch = dataset[batch_start:batch_start + batch_size]
|
||||
if "text" in batch:
|
||||
prompts = [ example.split(split)[0] + split for example in batch["text"] ]
|
||||
expected_responses = [ example.split(split)[1] for example in batch["text"] ]
|
||||
else:
|
||||
prompts = []
|
||||
expected_responses = []
|
||||
for example in batch["conversations"]:
|
||||
conversation = [ { "role": x["from"], "content": x["value"] } for x in example if x["from"] != "assistant"]
|
||||
|
||||
if use_icl:
|
||||
new_conversation = []
|
||||
for turn in conversation:
|
||||
if turn["role"] == "system":
|
||||
entity_names = entity_ids_regex.findall(turn["content"])
|
||||
service_names = [ x.split("(")[0] for x in service_names_regex.findall(turn["content"]) ]
|
||||
icl_examples = icl_example_generator(5, entity_names, service_names)
|
||||
turn["content"] = turn["content"] + "Respond to the following user instruction by responding in the same format as the following examples:\n" + icl_examples
|
||||
new_conversation.append(turn)
|
||||
conversation = new_conversation
|
||||
|
||||
prompts.append(trained_tokenizer.apply_chat_template(
|
||||
conversation=conversation,
|
||||
max_length=CTX_SIZE,
|
||||
truncation=True,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
))
|
||||
|
||||
if use_icl:
|
||||
response = [x["value"] for x in example if x["from"] == "assistant"][0]
|
||||
expected_calls = service_call_regex.findall(response)
|
||||
to_say = service_call_regex.sub("", response)
|
||||
expected_responses.append(expected_calls[0])
|
||||
else:
|
||||
expected_responses.append([x["value"] for x in example if x["from"] == "assistant"][0])
|
||||
output = generate(trained_model, trained_tokenizer, prompts)
|
||||
|
||||
for model_output, expected_response in zip(output, expected_responses):
|
||||
response = model_output.replace(trained_tokenizer.pad_token, "").replace(trained_tokenizer.eos_token, "").split(split)[1].strip()
|
||||
|
||||
expected_service_calls = []
|
||||
|
||||
if use_icl:
|
||||
regex_to_use = json_regex
|
||||
else:
|
||||
regex_to_use = service_call_regex
|
||||
|
||||
for block in regex_to_use.findall(expected_response.strip()):
|
||||
for line in block.split("\n"):
|
||||
if len(line) == 0:
|
||||
continue
|
||||
expected_service_calls.append(json.loads(line))
|
||||
total_answers = total_answers + 1
|
||||
|
||||
found_responses = regex_to_use.findall(response.strip())
|
||||
|
||||
if len(expected_service_calls) == 0:
|
||||
total_answers = total_answers + 1
|
||||
if len(found_responses) == 0:
|
||||
correct_answers = correct_answers + 1
|
||||
continue
|
||||
else:
|
||||
failed_examples.append({ "expected": expected_response, "actual": response, "extra_response": True })
|
||||
continue
|
||||
|
||||
if len(found_responses) == 0:
|
||||
failed_examples.append({ "expected": expected_response, "actual": response, "no_response_found": True })
|
||||
continue
|
||||
|
||||
for block in found_responses:
|
||||
for line in block.split("\n"):
|
||||
if len(line) == 0:
|
||||
continue
|
||||
try:
|
||||
json_output = json.loads(line)
|
||||
except:
|
||||
failed_examples.append({ "expected": expected_response, "actual": response, "invalid_json": True })
|
||||
continue
|
||||
|
||||
if use_icl:
|
||||
json_output.pop("to_say")
|
||||
|
||||
if json_output in expected_service_calls:
|
||||
expected_service_calls.pop(expected_service_calls.index(json_output))
|
||||
correct_answers = correct_answers + 1
|
||||
elif "rgb_color" in json_output:
|
||||
for sc in expected_service_calls:
|
||||
sc = { **sc }
|
||||
json_output_copy = { **json_output }
|
||||
if not "rgb_color" in sc:
|
||||
continue
|
||||
del sc["rgb_color"]
|
||||
del json_output_copy["rgb_color"]
|
||||
if sc == json_output_copy:
|
||||
correct_answers = correct_answers + 1
|
||||
color_mismatches = color_mismatches + 1
|
||||
else:
|
||||
failed_examples.append({ "expected": expected_response, "actual": response })
|
||||
else:
|
||||
failed_examples.append({ "expected": expected_response, "actual": response })
|
||||
|
||||
pbar.update(batch_size)
|
||||
pbar.set_description(f"Accuracy: {correct_answers/total_answers*100:.2f}% ({correct_answers}/{total_answers})")
|
||||
|
||||
accuracy = correct_answers/total_answers
|
||||
print(f"Final Accuracy Rating: {accuracy*100:.2f}%")
|
||||
print(f"Color Mismatches: {color_mismatches}")
|
||||
|
||||
with open(os.path.join(output_folder, "eval_results.json"), "w") as f:
|
||||
json.dump({
|
||||
"possible_answers": total_answers,
|
||||
"correct_answers": correct_answers,
|
||||
"accuracy": accuracy,
|
||||
"color_mismatches": color_mismatches,
|
||||
"failed_examples": failed_examples,
|
||||
}, f, indent=4)
|
||||
|
||||
def load_model(model_name, is_lora, is_hf, load_in_8bit, checkpoint_name):
|
||||
lora_folder = f"./loras/{model_name}/"
|
||||
model_folder = f"./models/{model_name}/"
|
||||
|
||||
# tokenizer isn't saved into checkpoint folders
|
||||
tokenizer_folder = model_folder
|
||||
|
||||
if checkpoint_name:
|
||||
lora_folder = lora_folder + f"{checkpoint_name}/"
|
||||
model_folder = model_folder + f"{checkpoint_name}/"
|
||||
|
||||
if is_hf:
|
||||
print(f"Loading model {model_name}...")
|
||||
trained_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
trust_remote_code=TRUST_REMOTE_CODE,
|
||||
torch_dtype=torch.bfloat16,
|
||||
load_in_8bit=load_in_8bit,
|
||||
)
|
||||
|
||||
trained_tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_name,
|
||||
trust_remote_code=TRUST_REMOTE_CODE,
|
||||
padding_side='left',
|
||||
)
|
||||
elif is_lora:
|
||||
adapter_config = PeftConfig.from_pretrained(lora_folder)
|
||||
base_model_name = adapter_config.base_model_name_or_path
|
||||
print(f"Loading lora from {lora_folder} ({base_model_name})...")
|
||||
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
base_model_name,
|
||||
trust_remote_code=TRUST_REMOTE_CODE,
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
trained_model = PeftModel.from_pretrained(
|
||||
base_model,
|
||||
lora_folder,
|
||||
trust_remote_code=TRUST_REMOTE_CODE,
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
trained_tokenizer = AutoTokenizer.from_pretrained(
|
||||
base_model_name,
|
||||
trust_remote_code=TRUST_REMOTE_CODE,
|
||||
padding_side='left',
|
||||
)
|
||||
else:
|
||||
print(f"Loading model from {model_folder}...")
|
||||
trained_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_folder,
|
||||
trust_remote_code=TRUST_REMOTE_CODE,
|
||||
torch_dtype=torch.bfloat16,
|
||||
load_in_8bit=load_in_8bit,
|
||||
)
|
||||
|
||||
trained_tokenizer = AutoTokenizer.from_pretrained(
|
||||
tokenizer_folder,
|
||||
trust_remote_code=TRUST_REMOTE_CODE,
|
||||
padding_side='left',
|
||||
)
|
||||
|
||||
eos_token_id_to_use = trained_model.config.eos_token_id
|
||||
if len(eos_token_id_to_use) > 0:
|
||||
eos_token_id_to_use = trained_model.config.eos_token_id[0]
|
||||
|
||||
pad_token_id_to_use = trained_model.config.pad_token_id
|
||||
if not trained_tokenizer.pad_token:
|
||||
trained_tokenizer.pad_token = trained_tokenizer.eos_token
|
||||
|
||||
if len(trained_model.config.eos_token_id) > 0:
|
||||
pad_token_id_to_use = trained_model.config.eos_token_id[0]
|
||||
else:
|
||||
pad_token_id_to_use = trained_model.config.eos_token_id
|
||||
|
||||
trained_model.generation_config = GenerationConfig(
|
||||
max_new_tokens=128,
|
||||
use_cache=True,
|
||||
do_sample=True,
|
||||
temperature=0.1,
|
||||
top_k=40,
|
||||
top_p=1.0,
|
||||
repetition_penalty=1.15,
|
||||
eos_token_id=trained_model.config.eos_token_id,
|
||||
# eos_token_id=128009,
|
||||
pad_token_id=pad_token_id_to_use,
|
||||
)
|
||||
|
||||
return trained_model, trained_tokenizer
|
||||
|
||||
def main():
|
||||
global in_context_examples
|
||||
parser = argparse.ArgumentParser(description="Evaluate the function calling for a model")
|
||||
parser.add_argument("model")
|
||||
parser.add_argument("--dataset-file", default="./data/home_assistant_test.jsonl")
|
||||
parser.add_argument("--batch-size", default=8)
|
||||
parser.add_argument("--lora", default=False, action='store_const', const=True)
|
||||
parser.add_argument("--all-checkpoints", default=False, action='store_const', const=True)
|
||||
parser.add_argument("--overwrite", default=False, action='store_const', const=True)
|
||||
parser.add_argument("--hf", default=False, action='store_const', const=True)
|
||||
parser.add_argument("--load-in-8bit", default=False, action='store_const', const=True)
|
||||
|
||||
args = parser.parse_args()
|
||||
batch_size = int(args.batch_size)
|
||||
|
||||
dataset = load_dataset("json", data_files={ "train": args.dataset_file })["train"]
|
||||
|
||||
print(f"Got {len(dataset)} examples to test")
|
||||
|
||||
if args.hf:
|
||||
output_folder = "./"
|
||||
trained_model, trained_tokenizer = load_model(args.model, args.lora, True, args.load_in_8bit, None)
|
||||
evaluate(output_folder, trained_model, trained_tokenizer, dataset, batch_size, True)
|
||||
|
||||
else:
|
||||
model_folder = f"./loras/{args.model}/" if args.lora else f"./models/{args.model}/"
|
||||
|
||||
if not os.path.isdir(model_folder):
|
||||
print(f"Model Not Found: {args.model}")
|
||||
return
|
||||
|
||||
|
||||
if not args.all_checkpoints:
|
||||
checkpoints = [None]
|
||||
else:
|
||||
checkpoints = [x for x in os.listdir(model_folder) if os.path.isdir(os.path.join(model_folder, x)) and "checkpoint" in x]
|
||||
checkpoints = sorted(checkpoints, key=lambda x: int(x.split('-')[-1]))
|
||||
checkpoints.append(None)
|
||||
|
||||
print(f"Found {len(checkpoints) - 1} checkpoints to test (plus the final model)")
|
||||
|
||||
for ckpt in checkpoints:
|
||||
if ckpt:
|
||||
output_folder = os.path.join(model_folder, ckpt)
|
||||
else:
|
||||
output_folder = model_folder
|
||||
|
||||
output_filename = os.path.join(output_folder, "eval_results.json")
|
||||
if os.path.exists(output_filename):
|
||||
if not args.overwrite:
|
||||
print(f"Evaluation already exists for {output_folder}. Skipping...")
|
||||
continue
|
||||
|
||||
trained_model, trained_tokenizer = load_model(args.model, args.lora, False, False, ckpt)
|
||||
evaluate(output_folder, trained_model, trained_tokenizer, dataset, batch_size, False)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,8 +0,0 @@
|
||||
docker run -d --rm \
|
||||
--gpus all \
|
||||
-p 8888:8888 \
|
||||
-v /mnt/data/training-runs:/workspace/data/axolotl-artifacts \
|
||||
-v /mnt/data/training-data:/workspace/data/datasets \
|
||||
-v /mnt/data/training-configs:/workspace/configs \
|
||||
-v /mnt/data/hf-cache:/workspace/data/huggingface-cache \
|
||||
axolotlai/axolotl-cloud:main-py3.11-cu128-2.8.0
|
||||
12
train/train.sh
Normal file
12
train/train.sh
Normal file
@@ -0,0 +1,12 @@
|
||||
#!/bin/bash
|
||||
|
||||
MODEL_NAME=${1}
|
||||
REMOTE_SERVER=${2}
|
||||
|
||||
if [ -z "$MODEL_NAME" ] || [ -z "$REMOTE_SERVER" ]; then
|
||||
echo "Usage: $0 <config-name> <remote-server>"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
scp configs/${MODEL_NAME}.yml ${REMOTE_SERVER}:/mnt/data/training-configs/
|
||||
cat training-job.yml | sed "s/MODEL_NAME/${MODEL_NAME}/g" | kubectl create -f -
|
||||
@@ -1,11 +1,12 @@
|
||||
apiVersion: batch/v1
|
||||
kind: Job
|
||||
metadata:
|
||||
generateName: training-job-
|
||||
generateName: training-job-MODEL_NAME
|
||||
namespace: ai
|
||||
labels:
|
||||
app: training-job
|
||||
spec:
|
||||
ttlSecondsAfterFinished: 604800 # 7 days (7 * 24 * 60 * 60)
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
@@ -18,7 +19,7 @@ spec:
|
||||
command:
|
||||
- axolotl
|
||||
- train
|
||||
- /workspace/configs/functiongemma-270m.yml
|
||||
- /workspace/configs/MODEL_NAME.yml
|
||||
env:
|
||||
- name: AXOLOTL_DO_NOT_TRACK
|
||||
value: "1"
|
||||
@@ -38,7 +39,7 @@ spec:
|
||||
mountPath: /workspace/data/huggingface-cache
|
||||
resources:
|
||||
limits:
|
||||
nvidia.com/gpu: 2
|
||||
nvidia.com/gpu: 2 # number of GPUs to assign to this pod
|
||||
initContainers:
|
||||
- name: tensorboard
|
||||
image: python:3.11-slim
|
||||
|
||||
Reference in New Issue
Block a user