mirror of
https://github.com/acon96/home-llm.git
synced 2026-01-08 05:14:02 -05:00
4.4 KiB
4.4 KiB
StableLM 2 Zephyr 1.6B
rev1
- 1 epoch
- 2048 train ctx
- batch size 8
- learning rate 1e-5
- weight decay 0.1
- gradient clipping 1.0
- dataset size: small
- it honestly works not terribly and I was kinda able to get it to respond to german
- evaluation results: 0.7108953613807982
rev2
- dataset size: large (also rewrote how it works slightly)
- evaluation results:
- 600: 0.7826321467098166
- 800: 0.8090614886731392
- 1000: 0.7669902912621359
- 1200: 0.7944983818770227
- 1400: 0.8176914778856527
- 1600: 0.8268608414239482
- 1800: 0.8263214670981661
- Final: 0.8274002157497303
StableLM Zephyr 3B
rev1
- 1 epoch
- 2048 train ctx
- batch size 8
- learning rate 1e-5
- weight decay 0.1
- gradient clipping 1.0
- lora rank: 32, alpha: 64
- accidentally forgot to turn off fine tuning of embeddings
- dataset size: large
- evaluation results:
- 400: 0.8344
- 800: 0.9228694714131608
- 1200: 0.9401294498381877
- 1600: 0.95361380798274
- Final (1929): 0.9492988133764833
rev2
- not fine-tuning the embeddings (no added tokens)
- dataset: new version with varied system prompts/responses (small)
- evauluation results:
- 400: 0.6748893105629349
- 800: 0.7280202403542062
- 1200: 0.7685009487666035
- 1600: 0.7798861480075902
- Final (1967): 0.7849462365591398
- definitely needs more data
rev3
- lora rank: 64, alpha: 128
- dataset size: large
- evaluation results:
- 400: 0.8785578747628083
- 800: 0.9247311827956989
- 1200: 0.9348513598987982
- 1600: 0.9222011385199241
- 2000: 0.9354838709677419
- 2400: 0.9740670461733081
- 2800: 0.9595192915876027
- 3200: 0.948134092346616
- 3600: 0.963314358001265
- 4000: 0.9614168247944339
- Final (~4200): 0.9538266919671095
rev4
- lora rank: 64, alpha: 128
- dataset size: large (with new device types)
- evaluation results:
- 400: 0.867914979757085
- 800: 0.9316801619433198
- 1200: 0.9215587044534413
- 1600: 0.9686234817813765
- 2000: 0.9772267206477733
- 2400: 0.9752024291497976
- 2800: 0.9802631578947368
- 3200: 0.9777327935222672
- 3600: 0.9812753036437247
- 4000: 0.979251012145749
- 4400: 0.978744939271255
- 4800: 0.9777327935222672
- Final (5234): 0.9782388663967612
- overfit
rev5
- lora rank: 64, alpha: 128
- dataset size: medium (with new device types)
- evaluation results:
- 400: 0.8709514170040485
- 800: 0.9316801619433198
- 1200: 0.9544534412955465
- 1600: 0.9559716599190283
- 2000: 0.9671052631578947
- 2400: 0.9671052631578947
- 2800: 0.9701417004048583
- 3200: 0.9696356275303644
- 3600: 0.9736842105263158
- 4000: 0.9706477732793523
- Final: 0.9711538461538461
rev6
- lora rank: 64, alpha: 128
- batch size: 32
- dataset size: medium (with new device types)
- evaluation results:
- 100: 0.7545546558704453
- 200: 0.8567813765182186
- 300: 0.8977732793522267
- 400: 0.9068825910931174
- 500: 0.9261133603238867
- 600: 0.9342105263157895
- 700: 0.9407894736842105
- 800: 0.9478744939271255
- 900: 0.937246963562753
- 1000: 0.9438259109311741
- Final: 0.9453441295546559
rev7
- lora rank: 64, alpha: 128
- epochs: 2
- batch size: 128
- dataset size: large (with fixed service names)
- evaluation results:
- 50: 0.6022267206477733
- 100: 0.8254048582995951
- 150: 0.8689271255060729
- 200: 0.9013157894736842
- 250: 0.9073886639676113
- 300: 0.9210526315789473
- 350: 0.937753036437247
- 400: 0.9362348178137652
- 450: 0.9478744939271255
- 500: 0.9463562753036437
- 550:
- 600: 0.9473684210526315
- 650: 0.9387651821862348
- Final: 0.9463562753036437
- german: 0.5758754863813229
- french: 0.6490034030140982
- spanish: 0.6481391976800387
rev9
- full fine-tune
- epochs: 1
- batch size: 64
- dataset size: medium /w 4 languages
- eval results:
- english: 0.9961183891314895
- german: 0.9571984435797666
- french: 0.9484686436558094
- spanish: 0.9685838569357177
stablelm-2-1_6b-zephyr
rev3
- full fine tune
- epochs: 1
- 2048 train ctx
- batch size 32
- learning rate 1e-5
- weight decay 0.1
- gradient clipping 1.0
- dataset size: medium
- evaluation results:
- 100: 0.35779352226720645
- 200: 0.5247975708502024
- 300: 0.5339068825910931
- 400: 0.6280364372469636
- 500: 0.6923076923076923
- 600: 0.7064777327935222
- 700: 0.7135627530364372
- 800: 0.7044534412955465
- 900: 0.707995951417004
- 1000: 0.718117408906882
- Final: 0.7145748987854251
rev4
- dataset size: large