Files
home-llm/train.py
2024-01-13 23:36:56 -05:00

408 lines
17 KiB
Python

#!/usr/bin/env python3
import math
import copy
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, \
PreTrainedTokenizerFast, HfArgumentParser, GPTQConfig, AutoConfig
from datasets import load_dataset
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
"""
Phi Modules: fc1,fc2,Wqkv,out_proj,wte,lm_head.linear
"""
"""
python3 train.py \
--run_name home-3b-v2-rev2_1 \
--base_model microsoft/phi-2 \
--add_pad_token \
--add_chatml_tokens \
--bf16 \
--train_dataset data/home_assistant_alpaca_merged_train.json \
--test_dataset data/home_assistant_alpaca_merged_test.json \
--learning_rate 1e-5 \
--save_steps 1000 \
--micro_batch_size 4 --gradient_checkpointing \
--ctx_size 2048 \
--use_lora --lora_rank 32 --lora_alpha 64 --lora_modules fc1,fc2,Wqkv,out_proj --lora_modules_to_save wte,lm_head.linear --lora_merge
"""
"""
python3 train.py \
--run_name home-1b-rev3_3 \
--base_model microsoft/phi-1_5 \
--add_pad_token \
--add_chatml_tokens \
--bf16 \
--train_dataset data/home_assistant_train.json \
--test_dataset data/home_assistant_test.json \
--learning_rate 1e-5 \
--micro_batch_size 4 --gradient_checkpointing \
--ctx_size 2048
"""
"""
python3 train.py \
--run_name home-7b-rev2 \
--base_model TheBloke/Llama-2-7B-GPTQ \
--train_dataset data/home_assistant_train.json \
--test_dataset data/home_assistant_test.json \
--load_as_gptq --use_lora --gradient_checkpointing \
--add_pad_token --bf16 --micro_batch_size 4 --learning_rate 2e-5
"""
@dataclass
class TrainingRunArguments:
run_name: str = field(metadata={"help": "The folder to save the output model under"})
train_dataset: str = field(metadata={"help": "The JSON file containing the training dataset"})
test_dataset: str = field(metadata={"help": "The JSON file containing the evaluation dataset"})
base_model: str = field(metadata={"help": "The base model to load for fine-tuning"})
ctx_size: int = field(default=2048, metadata={"help": "The number of tokens to pad & truncate the input examples to"})
bf16: bool = field(default=False, metadata={"help": "If set, the model will the loaded and trained in bf16 instead of fp16"})
batch_size: int = field(default=8, metadata={"help": "The simulated 'batch size' that we will train on. will tweak gradient accumulations steps"})
micro_batch_size: int = field(default=2, metadata={"help": "The actual batch size that will fit into VRAM on this machine"})
epochs: int = field(default=1, metadata={"help": "The number of times to train the model on each example"})
learning_rate: float = field(default=1e-5, metadata={"help": "The starting learning rate (speed at which the model trains)"})
learning_rate_schedule: str = field(default="cosine", metadata={"help": "How fast the learning rate is reduced during training"})
weight_decay: float = field(default=0.1, metadata={"help": ""})
gradient_clip: float = field(default=1.0, metadata={"help": ""})
resume_from_checkpoint: str = field(default="", metadata={"help": "The name of the checkpoint to resume training from"})
eval_steps: int = field(default=100, metadata={"help": "The number of steps in between evaluations of the model"})
save_steps: int = field(default=-1, metadata={"help": "The number of steps in between model checkpoints; set to -1 to save every epoch"})
group_by_length: bool = field(default=False, metadata={"help": "If enabled, the training data will be grouped by length to optimize use of padding"})
# Quantization
load_in_8bit: bool = field(default=False, metadata={"help": "Set to load the base model in 8-bit mode using bitsandbytes"})
load_in_4bit: bool = field(default=False, metadata={"help": "Set to load the base model in 4-bit mode using bitsandbytes"})
load_as_gptq: bool = field(default=False, metadata={"help": "Set to load the base model as a GPTQ using AutoGPTQ"})
# lora config
use_lora: bool = field(default=False, metadata={"help": "If set, then the trained model will be a LoRA"})
lora_rank: int = field(default=4)
lora_alpha: int = field(default=32)
lora_dropout: float = field(default=0.05)
lora_modules: str = field(default=None)
lora_modules_to_save: str = field(default=None, metadata={"help": "Additional modules to save"})
lora_merge: bool = field(default=False, metadata={"help": "If set, the Lora will be merged back into the base model an saved"})
add_pad_token: bool = field(default=False, metadata={"help": "If set, a pad token will be added to the tokenizer's vocabulary"})
add_chatml_tokens: bool = field(default=False, metadata={"help": "If set, tokens for the ChatML format will be added specifically"})
gradient_checkpointing: bool = field(default=False, metadata={"help": "Enables gradient checkpointing which saves quite a lot of VRAM"})
run_tensorboard: bool = field(default=False, metadata={"help": "If set, will tensorboard in the background to monitor training progress"})
parser = HfArgumentParser([TrainingRunArguments])
training_run_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True)
if sum([training_run_args.load_in_8bit, training_run_args.load_in_4bit, training_run_args.load_as_gptq]) > 1:
raise Exception("Please select exactly one of 'load_in_8bit', 'load_in_4bit', or 'load_as_gptq")
# TODO: write a proper evaluation script
print(f"Loading model '{training_run_args.base_model}'...")
model_kwargs = {}
if training_run_args.load_in_8bit:
model_kwargs["load_in_8bit"] = True
elif training_run_args.load_in_4bit:
model_kwargs["load_in_4bit"] = True
elif training_run_args.load_as_gptq:
model_kwargs["quantization_config"] = GPTQConfig(bits=4, disable_exllama=True)
if training_run_args.bf16:
model_kwargs["torch_dtype"] = torch.bfloat16
else:
model_kwargs["torch_dtype"] = torch.float16
# model_kwargs["resid_pdrop"] = 0.0
def find_max_vram(min_buffer_mib=800):
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024))
suggestion = round((total_mem - 1000) / 1000) * 1000
suggestion = min(suggestion, total_mem - min_buffer_mib)
print(f"Model will target using {suggestion}MiB of VRAM")
max_memory = {0: f'{suggestion}MiB'}
return max_memory if len(max_memory) > 0 else None
model = AutoModelForCausalLM.from_pretrained(
training_run_args.base_model,
trust_remote_code=True,
device_map="auto",
max_memory=find_max_vram(),
**model_kwargs
)
tokenizer = AutoTokenizer.from_pretrained(training_run_args.base_model, trust_remote_code=True, use_fast=False)
if training_run_args.add_pad_token:
tokenizer.add_special_tokens({'pad_token': '<|pad|>'})
if training_run_args.add_chatml_tokens:
tokenizer.add_special_tokens({
'bos_token': '<|im_start|>',
'eos_token': '<|im_end|>'
})
model.config.bos_token_id = tokenizer.bos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
embeddings_len = math.ceil(len(tokenizer) / 32) * 32
if model.get_input_embeddings().num_embeddings < embeddings_len:
model.resize_token_embeddings(embeddings_len)
else:
model.tie_weights()
if training_run_args.use_lora:
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
print("Creating LoRA for model...")
target_modules = training_run_args.lora_modules.split(",") if training_run_args.lora_modules else None
modules_to_save = training_run_args.lora_modules_to_save.split(",") if training_run_args.lora_modules_to_save else None
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=training_run_args.lora_rank,
lora_alpha=training_run_args.lora_alpha,
lora_dropout=training_run_args.lora_dropout,
target_modules=target_modules,
modules_to_save=modules_to_save,
)
if training_run_args.load_in_8bit or training_run_args.load_in_4bit or training_run_args.load_as_gptq:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_run_args.gradient_checkpointing
)
model = get_peft_model(model, peft_config)
model.enable_input_require_grads()
model.print_trainable_parameters()
base_dir = "loras" if training_run_args.use_lora else "models"
model_dir = f"./{base_dir}/{training_run_args.run_name}"
# TODO: eval is broken (returning NaN for loss)
training_args = TrainingArguments(
per_device_train_batch_size=training_run_args.micro_batch_size,
# per_device_eval_batch_size=training_run_args.micro_batch_size,
gradient_accumulation_steps=training_run_args.batch_size//training_run_args.micro_batch_size,
gradient_checkpointing=training_run_args.gradient_checkpointing,
# weight_decay=training_run_args.weight_decay,
# max_grad_norm=training_run_args.gradient_clip,
# evaluation_strategy="steps",
# eval_steps=training_run_args.eval_steps,
save_strategy=("steps" if training_run_args.save_steps != -1 else "epoch"),
save_steps=(training_run_args.save_steps if training_run_args.save_steps != -1 else None),
save_safetensors=True,
logging_steps=5,
output_dir=model_dir,
num_train_epochs=training_run_args.epochs,
save_total_limit=1,
# dataloader_pin_memory=False,
report_to="tensorboard",
learning_rate=training_run_args.learning_rate,
lr_scheduler_type=training_run_args.learning_rate_schedule,
log_level="info",
bf16=training_run_args.bf16,
# bf16_full_eval=training_run_args.bf16,
group_by_length=training_run_args.group_by_length
)
class DataCollatorForSupervisedFineTuning(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: AutoTokenizer
prompt_split: str
response_prefix: str
response_suffix: str
prefix_ids: list[int]
suffix_ids: list[int]
def __init__(self,
*,
tokenizer: AutoTokenizer,
response_prefix: str = "<|im_start|>assistant",
response_suffix: str = "<|im_end|>",
):
self.tokenizer = tokenizer
self.response_prefix = response_prefix
self.response_suffix = response_suffix
self.prefix_ids = self.tokenizer(self.response_prefix, add_special_tokens=False)["input_ids"]
self.suffix_ids = self.tokenizer(self.response_suffix, add_special_tokens=False)["input_ids"]
def _find_mask_ranges(self, input_ids):
"""
Returns a mask that blocks out everything but the response from the assistant
The mask does NOT include the response_prefix but DOES include the response_suffix.
The resulting behavior is the model uses the prefix as a prompt and the suffix as the end of text token
"""
ranges = []
i = 0
while i < len(input_ids):
try:
# Find the start index of the prefix
start_idx = input_ids.index(self.prefix_ids[0], i)
except ValueError:
break
# Check if the entire prefix is present
if input_ids[start_idx:start_idx + len(self.prefix_ids)] == self.prefix_ids:
end_prefix_idx = start_idx + len(self.prefix_ids)
start_response_idx = end_prefix_idx + 1
# Find the start index of the suffix
try:
# Find the start index of the suffix
suffix_start_idx = input_ids.index(self.suffix_ids[0], end_prefix_idx)
except ValueError:
ranges.append((start_response_idx, len(input_ids)))
break
# Check if the entire suffix is present
if input_ids[suffix_start_idx:suffix_start_idx + len(self.suffix_ids)] == self.suffix_ids:
ranges.append((start_response_idx, suffix_start_idx))
i = suffix_start_idx + len(self.suffix_ids)
else:
i = suffix_start_idx + 1
else:
i = start_idx + 1
inverse_ranges = []
current = 0
for start, end in sorted(ranges):
if start > current:
inverse_ranges.append((current, start - 1))
current = max(current, end + 1)
if current < len(input_ids):
inverse_ranges.append((current, len(input_ids) - 1))
return inverse_ranges
def _pad(self, examples, pad_value):
longest = max([len(ex) for ex in examples])
result = []
for example in examples:
cur_len = len(example)
result.append(example + [pad_value] * (longest - cur_len))
return result
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids = [instance["input_ids"] for instance in instances]
labels = copy.deepcopy(input_ids)
for label in labels:
mask_ranges = self._find_mask_ranges(label)
for start, end in mask_ranges:
if end - start == len(label):
print("warning! example had no assistant response in it!")
label[start:end] = [-100] * (end - start)
input_ids = torch.LongTensor(self._pad(input_ids, self.tokenizer.pad_token_id))
labels = torch.LongTensor(self._pad(labels, -100))
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
print("Loading dataset...")
datasets = load_dataset("json", data_files={ "train": training_run_args.train_dataset, "test": training_run_args.test_dataset })
def tokenize(example):
return tokenizer(
text=example["text"],
max_length=training_run_args.ctx_size,
truncation=True,
add_special_tokens=False,
)
print("Tokenizing datasets...")
tokenized_train_dataset = datasets["train"].map(tokenize, batched=True).remove_columns(["text"])
tokenized_test_dataset = datasets["test"].map(tokenize, batched=True).remove_columns(["text"])
data_collator = DataCollatorForSupervisedFineTuning(tokenizer=tokenizer)
import random
from torch.utils.data import SequentialSampler, Subset, RandomSampler
class RandomEvalSubsetTrainer(Trainer):
def __init__(self, random_eval_sample_pct=0.1, *args, **kwargs):
super().__init__(*args, **kwargs)
self.random_eval_sample_pct = random_eval_sample_pct
self.evaluate_full_dataset = False
def evaluate_all(self):
self.evaluate_full_dataset = True
super().evaluate()
self.evaluate_full_dataset = False
# Randomly sample the eval dataset
def _get_eval_sampler(self, eval_dataset):
if self.evaluate_full_dataset:
return SequentialSampler(eval_dataset)
else:
num_samples = int(self.random_eval_sample_pct * len(eval_dataset))
random_indices = random.sample(range(len(eval_dataset)), num_samples)
subset_eval_dataset = Subset(eval_dataset, random_indices)
return SequentialSampler(subset_eval_dataset)
def _get_train_sampler(self):
if self.args.group_by_length:
return super()._get_train_sampler()
return RandomSampler(self.train_dataset, generator=torch.Generator(device='cpu'))
trainer = RandomEvalSubsetTrainer(
model=model,
args=training_args,
train_dataset=tokenized_train_dataset,
# eval_dataset=tokenized_test_dataset,
data_collator=data_collator,
)
tensorboard_process = None
def kill_tensorboard():
tensorboard_process.kill()
if training_run_args.run_tensorboard:
import subprocess, atexit
tensorboard_process = subprocess.Popen(["tensorboard", "--logdir", model_dir])
atexit.register(kill_tensorboard)
try:
checkpoint = training_run_args.resume_from_checkpoint
if checkpoint:
trainer.train(checkpoint)
else:
trainer.train()
# trainer.evaluate_all()
if training_run_args.use_lora and training_run_args.lora_merge:
trainer.save_model() # save lora
merged_model = model.merge_and_unload(progressbar=True)
merged_model_dir = f"./models/{training_run_args.run_name}"
merged_model.save_pretrained(merged_model_dir, safe_serialization=True, max_shard_size="2GB")
tokenizer.save_pretrained(merged_model_dir)
else:
trainer.save_model()
tokenizer.save_pretrained(model_dir)
if tensorboard_process:
input("Training is finished. Press enter to quit tensorboard after the viewing results.")
tensorboard_process.kill()
except Exception as e:
print("Something bad happened! Try and save it?")
import code, traceback
traceback.print_exc()
code.interact(local=locals())