Files
home-llm/train.py
2023-10-28 00:15:03 -04:00

243 lines
9.9 KiB
Python

import math
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, \
DataCollatorForLanguageModeling, HfArgumentParser, GPTQConfig
from datasets import load_dataset
from dataclasses import dataclass, field
torch.set_default_device("cuda")
"""
python3 train.py \
--run_name home-llm-rev9.1 \
--base_model microsoft/phi-1_5 \
--disable_attention_mask \
--add_pad_token \
--bf16 \
--train_dataset data/home_assistant_train.json \
--test_dataset data/home_assistant_test.json
"""
"""
python3 train.py \
--run_name home-llama2-13b-rev1 \
--base_model TheBloke/Llama-2-13B-GPTQ \
--train_dataset data/home_assistant_train.json \
--test_dataset data/home_assistant_test.json \
--load_as_gptq --use_lora --lora_rank 16 --gradient_checkpointing \
--add_pad_token --bf16 --micro_batch_size 1 --learning_rate 2e-5
"""
@dataclass
class TrainingRunArguments:
run_name: str = field(metadata={"help": "The folder to save the output model under"})
train_dataset: str = field(metadata={"help": "The JSON file containing the training dataset"})
test_dataset: str = field(metadata={"help": "The JSON file containing the evaluation dataset"})
base_model: str = field(metadata={"help": "The base model to load for fine-tuning"})
ctx_size: int = field(default=512, metadata={"help": "The number of tokens to pad & truncate the input examples to"})
bf16: bool = field(default=False, metadata={"help": "If set, the model will the loaded and trained in bf16 instead of fp16"})
batch_size: int = field(default=8, metadata={"help": "The simulated 'batch size' that we will train on. will tweak gradient accumulations steps"})
micro_batch_size: int = field(default=2, metadata={"help": "The actual batch size that will fit into VRAM on this machine"})
epochs: int = field(default=1, metadata={"help": "The number of times to train the model on each example"})
learning_rate: float = field(default=1e-5, metadata={"help": "The starting learning rate (speed at which the model trains)"})
learning_rate_schedule: str = field(default="cosine", metadata={"help": "How fast the learning rate is reduced during training"})\
# Quantization
load_in_8bit: bool = field(default=False, metadata={"help": "Set to load the base model in 8-bit mode using bitsandbytes"})
load_in_4bit: bool = field(default=False, metadata={"help": "Set to load the base model in 4-bit mode using bitsandbytes"})
load_as_gptq: bool = field(default=False, metadata={"help": "Set to load the base model as a GPTQ using AutoGPTQ"})
use_lora: bool = field(default=False, metadata={"help": "If set, then the trained model will be a LoRA"})
lora_rank: int = field(default=4)
lora_alpha: int = field(default=32)
lora_dropout: float = field(default=0.05)
disable_attention_mask: bool = field(default=False, metadata={"help": "If set, disables the attention mask generated to ignore pad tokens."})
add_pad_token: bool = field(default=False, metadata={"help": "If set, a pad token will be added to the tokenizer's vocabulary"})
gradient_checkpointing: bool = field(default=False, metadata={"help": "Enables gradient checkpointing which saves quite a lot of VRAM"})
run_tensorboard: bool = field(default=True, metadata={"help": "If set, will tensorboard in the background to monitor training progress"})
parser = HfArgumentParser([TrainingRunArguments])
training_run_args, _ = parser.parse_args_into_dataclasses(return_remaining_strings=True)
if sum([training_run_args.load_in_8bit, training_run_args.load_in_4bit]) > 1:
raise Exception("Please select exactly one of 'bf16', 'load_in_8bit', 'load_in_4bit', or 'load_as_gptq")
# TODO: write a proper evaluation script
print(f"Loading model '{training_run_args.base_model}'...")
model_kwargs = {}
if training_run_args.load_in_8bit:
model_kwargs["load_in_8bit"] = True
elif training_run_args.load_in_4bit:
model_kwargs["load_in_4bit"] = True
elif training_run_args.load_as_gptq:
model_kwargs["quantization_config"] = GPTQConfig(bits=4, disable_exllama=True)
# if training_run_args.bf16:
# model_kwargs["torch_dtype"] = torch.bfloat16
# else:
# model_kwargs["torch_dtype"] = torch.float16
def find_max_vram(min_buffer_mib=800):
total_mem = (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024))
suggestion = round((total_mem - 1000) / 1000) * 1000
suggestion = min(suggestion, total_mem - min_buffer_mib)
print(f"Model will target using {suggestion}MiB of VRAM")
max_memory = {0: f'{suggestion}MiB'}
return max_memory if len(max_memory) > 0 else None
model = AutoModelForCausalLM.from_pretrained(
training_run_args.base_model,
trust_remote_code=True,
device_map="auto",
max_memory=find_max_vram(),
**model_kwargs
)
tokenizer = AutoTokenizer.from_pretrained(training_run_args.base_model, trust_remote_code=True)
if training_run_args.add_pad_token:
tokenizer.add_special_tokens({'pad_token': '<|pad|>'})
# TODO: figure out how to actually use the modified tokenizer when loading the base model + lora
# embeddings_len = math.ceil(len(tokenizer) / 32) * 32
# if model.get_input_embeddings().num_embeddings < embeddings_len:
# model.resize_token_embeddings(embeddings_len)
# else:
# model.tie_weights()
if training_run_args.use_lora:
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training
print("Creating LoRA for model...")
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=training_run_args.lora_rank,
lora_alpha=training_run_args.lora_alpha,
lora_dropout=training_run_args.lora_dropout,
target_modules=None,
)
if training_run_args.load_in_8bit or training_run_args.load_in_4bit or training_run_args.load_as_gptq:
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_run_args.gradient_checkpointing
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
def tokenize_function(example):
result = tokenizer(example['text'] + tokenizer.eos_token,
padding=True,
max_length=training_run_args.ctx_size,
truncation=True)
return result
print("Tokenizing Dataset...")
datasets = load_dataset("json", data_files={ "train": training_run_args.train_dataset, "test": training_run_args.test_dataset })
tokenized_train_dataset = datasets["train"].map(tokenize_function, remove_columns=datasets["train"].column_names)
tokenized_test_dataset = datasets["test"].map(tokenize_function, remove_columns=datasets["test"].column_names)
base_dir = "loras" if training_run_args.use_lora else "models"
model_dir = f"./{base_dir}/{training_run_args.run_name}"
training_args = TrainingArguments(
per_device_train_batch_size=training_run_args.micro_batch_size,
per_device_eval_batch_size=training_run_args.micro_batch_size,
gradient_accumulation_steps=training_run_args.batch_size/training_run_args.micro_batch_size,
# evaluation_strategy="epoch",
evaluation_strategy="steps",
eval_steps=100,
save_strategy="epoch",
# save_strategy="steps",
# save_steps=1000,
logging_steps=5,
output_dir=model_dir,
num_train_epochs=training_run_args.epochs,
save_total_limit=1,
dataloader_pin_memory=False,
report_to="tensorboard",
learning_rate=training_run_args.learning_rate,
lr_scheduler_type=training_run_args.learning_rate_schedule,
log_level="info",
bf16=training_run_args.bf16,
bf16_full_eval=training_run_args.bf16,
)
class NoAttentionMaskDataCollator(DataCollatorForLanguageModeling):
def torch_call(self, examples):
result = super().torch_call(examples)
del result["attention_mask"]
return result
if training_run_args.disable_attention_mask:
data_collator = NoAttentionMaskDataCollator(tokenizer, mlm=False)
else:
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
# TODO: ignore user input when training by masking the input properly
# @dataclass
# class CustomDataCollator:
# tokenizer: AutoTokenizer
# train_ctx_size: int
# def __call__(self, features, **kwargs):
# for feature in features:
# data_collator = CustomDataCollator(tokenizer=tokenizer)
import random
from torch.utils.data import SequentialSampler, Subset
class RandomEvalSubsetTrainer(Trainer):
def __init__(self, random_eval_sample_pct=0.1, *args, **kwargs):
super().__init__(*args, **kwargs)
self.random_eval_sample_pct = random_eval_sample_pct
self.evaluate_full_dataset = False
def evaluate_all(self):
self.evaluate_full_dataset = True
super().evaluate()
self.evaluate_full_dataset = False
# Randomly sample the eval dataset
def _get_eval_sampler(self, eval_dataset):
if self.evaluate_full_dataset:
return SequentialSampler(eval_dataset)
else:
num_samples = int(self.random_eval_sample_pct * len(eval_dataset))
random_indices = random.sample(range(len(eval_dataset)), num_samples)
subset_eval_dataset = Subset(eval_dataset, random_indices)
return SequentialSampler(subset_eval_dataset)
trainer = RandomEvalSubsetTrainer(
model=model,
args=training_args,
train_dataset=tokenized_train_dataset,
eval_dataset=tokenized_test_dataset,
data_collator=data_collator,
)
tensorboard_process = None
if training_run_args.run_tensorboard:
import subprocess
tensorboard_process = subprocess.Popen(["tensorboard", "--logdir", model_dir])
checkpoint = None
if checkpoint:
trainer.train(checkpoint)
else:
trainer.train()
trainer.evaluate_all()
trainer.save_model()
if not training_run_args.use_lora:
tokenizer.save_pretrained(model_dir)
if tensorboard_process:
input("Training is finished. Press enter to quit tensorboard after the viewing results.")
tensorboard_process.kill()