Files
infisical/docs/self-hosting/guides/monitoring-telemetry.mdx
2025-11-01 03:55:31 +08:00

557 lines
20 KiB
Plaintext

---
title: "Monitoring and Telemetry Setup"
description: "Learn how to set up monitoring and telemetry for your self-hosted Infisical instance using Grafana, Prometheus, and OpenTelemetry."
---
Infisical provides comprehensive monitoring and telemetry capabilities to help you monitor the health, performance, and usage of your self-hosted instance. This guide covers setting up monitoring using Grafana with two different telemetry collection approaches.
## Overview
Infisical exports metrics in **OpenTelemetry (OTEL) format**, which provides maximum flexibility for your monitoring infrastructure. While this guide focuses on Grafana, the OTEL format means you can easily integrate with:
- **Cloud-native monitoring**: AWS CloudWatch, Google Cloud Monitoring, Azure Monitor
- **Observability platforms**: Datadog, New Relic, Splunk, Dynatrace
- **Custom backends**: Any system that supports OTEL ingestion
- **Traditional monitoring**: Prometheus, Grafana (as covered in this guide)
Infisical supports two telemetry collection methods:
1. **Pull-based (Prometheus)**: Exposes metrics on a dedicated endpoint for Prometheus to scrape
2. **Push-based (OTLP)**: Sends metrics to an OpenTelemetry Collector via OTLP protocol
Both approaches provide the same metrics data in OTEL format, so you can choose the one that best fits your infrastructure and monitoring strategy.
## Prerequisites
- Self-hosted Infisical instance running
- Access to deploy monitoring services (Prometheus, Grafana, etc.)
- Basic understanding of Prometheus and Grafana
## Setup
### Environment Variables
Configure the following environment variables in your Infisical backend:
```bash
# Enable telemetry collection
OTEL_TELEMETRY_COLLECTION_ENABLED=true
# Choose export type: "prometheus" or "otlp"
OTEL_EXPORT_TYPE=prometheus
```
<Tabs>
<Tab title="Pull-based Monitoring (Prometheus)">
This approach exposes metrics on port 9464 at the `/metrics` endpoint, allowing Prometheus to scrape the data. The metrics are exposed in Prometheus format but originate from OpenTelemetry instrumentation.
### Configuration
<Steps>
<Step title="Enable Prometheus export in Infisical">
```bash
OTEL_TELEMETRY_COLLECTION_ENABLED=true
OTEL_EXPORT_TYPE=prometheus
```
</Step>
<Step title="Expose the metrics port">
Expose the metrics port in your Infisical backend:
- **Docker**: Expose port 9464
- **Kubernetes**: Create a service exposing port 9464
- **Other**: Ensure port 9464 is accessible to your monitoring stack
</Step>
<Step title="Create Prometheus configuration">
Create `prometheus.yml`:
```yaml
global:
scrape_interval: 30s
evaluation_interval: 30s
scrape_configs:
- job_name: "infisical"
scrape_interval: 30s
static_configs:
- targets: ["infisical-backend:9464"] # Adjust hostname/port based on your deployment
metrics_path: "/metrics"
```
<Note>
Replace `infisical-backend:9464` with the actual hostname and port where your Infisical backend is running. This could be:
- **Docker Compose**: `infisical-backend:9464` (service name)
- **Kubernetes**: `infisical-backend.default.svc.cluster.local:9464` (service name)
- **Bare Metal**: `192.168.1.100:9464` (actual IP address)
- **Cloud**: `your-infisical.example.com:9464` (domain name)
</Note>
</Step>
</Steps>
### Deployment Options
Once you've configured Infisical to expose metrics, you'll need to deploy Prometheus to scrape and store them. Below are examples for different deployment environments. Choose the option that matches your infrastructure.
<Tabs>
<Tab title="Docker Compose">
```yaml
services:
prometheus:
image: prom/prometheus:latest
ports:
- "9090:9090"
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml:ro
command:
- "--config.file=/etc/prometheus/prometheus.yml"
grafana:
image: grafana/grafana:latest
ports:
- "3000:3000"
environment:
- GF_SECURITY_ADMIN_USER=admin
- GF_SECURITY_ADMIN_PASSWORD=admin
```
</Tab>
<Tab title="Kubernetes">
```yaml
# prometheus-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: prometheus
spec:
replicas: 1
selector:
matchLabels:
app: prometheus
template:
metadata:
labels:
app: prometheus
spec:
containers:
- name: prometheus
image: prom/prometheus:latest
ports:
- containerPort: 9090
volumeMounts:
- name: config
mountPath: /etc/prometheus
volumes:
- name: config
configMap:
name: prometheus-config
---
# prometheus-service.yaml
apiVersion: v1
kind: Service
metadata:
name: prometheus
spec:
selector:
app: prometheus
ports:
- port: 9090
targetPort: 9090
type: ClusterIP
```
</Tab>
<Tab title="Helm">
```bash
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm install prometheus prometheus-community/prometheus \
--set server.config.global.scrape_interval=30s \
--set server.config.scrape_configs[0].job_name=infisical \
--set server.config.scrape_configs[0].static_configs[0].targets[0]=infisical-backend:9464
```
</Tab>
</Tabs>
</Tab>
<Tab title="Push-based Monitoring (OTLP)">
This approach sends metrics directly to an OpenTelemetry Collector via the OTLP protocol. This gives you the most flexibility as you can configure the collector to export to multiple backends simultaneously.
### Configuration
<Steps>
<Step title="Enable OTLP export in Infisical">
```bash
OTEL_TELEMETRY_COLLECTION_ENABLED=true
OTEL_EXPORT_TYPE=otlp
OTEL_EXPORT_OTLP_ENDPOINT=http://otel-collector:4318/v1/metrics
OTEL_COLLECTOR_BASIC_AUTH_USERNAME=infisical
OTEL_COLLECTOR_BASIC_AUTH_PASSWORD=infisical
OTEL_OTLP_PUSH_INTERVAL=30000
```
</Step>
<Step title="Create OpenTelemetry Collector configuration">
Create `otel-collector-config.yaml`:
```yaml
extensions:
health_check:
pprof:
zpages:
basicauth/server:
htpasswd:
inline: |
your_username:your_password
receivers:
otlp:
protocols:
http:
endpoint: 0.0.0.0:4318
auth:
authenticator: basicauth/server
prometheus:
config:
scrape_configs:
- job_name: otel-collector
scrape_interval: 30s
static_configs:
- targets: [infisical-backend:9464]
metric_relabel_configs:
- action: labeldrop
regex: "service_instance_id|service_name"
processors:
batch:
exporters:
prometheus:
endpoint: "0.0.0.0:8889"
auth:
authenticator: basicauth/server
resource_to_telemetry_conversion:
enabled: true
service:
extensions: [basicauth/server, health_check, pprof, zpages]
pipelines:
metrics:
receivers: [otlp]
processors: [batch]
exporters: [prometheus]
```
<Warning>
Replace `your_username:your_password` with your chosen credentials. These must match the values you set in Infisical's `OTEL_COLLECTOR_BASIC_AUTH_USERNAME` and `OTEL_COLLECTOR_BASIC_AUTH_PASSWORD` environment variables.
</Warning>
</Step>
<Step title="Create Prometheus configuration">
Create Prometheus configuration for the collector:
```yaml
global:
scrape_interval: 30s
evaluation_interval: 30s
scrape_configs:
- job_name: "otel-collector"
scrape_interval: 30s
static_configs:
- targets: ["otel-collector:8889"] # Adjust hostname/port based on your deployment
metrics_path: "/metrics"
```
<Note>
Replace `otel-collector:8889` with the actual hostname and port where your OpenTelemetry Collector is running. This could be:
- **Docker Compose**: `otel-collector:8889` (service name)
- **Kubernetes**: `otel-collector.default.svc.cluster.local:8889` (service name)
- **Bare Metal**: `192.168.1.100:8889` (actual IP address)
- **Cloud**: `your-collector.example.com:8889` (domain name)
</Note>
</Step>
</Steps>
### Deployment Options
After configuring Infisical and the OpenTelemetry Collector, you'll need to deploy the collector to receive metrics from Infisical. Below are examples for different deployment environments. Choose the option that matches your infrastructure.
<Tabs>
<Tab title="Docker Compose">
```yaml
services:
otel-collector:
image: otel/opentelemetry-collector-contrib:latest
ports:
- 4318:4318 # OTLP http receiver
- 8889:8889 # Prometheus exporter metrics
volumes:
- ./otel-collector-config.yaml:/etc/otelcol-contrib/config.yaml:ro
command:
- "--config=/etc/otelcol-contrib/config.yaml"
```
</Tab>
<Tab title="Kubernetes">
```yaml
# otel-collector-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: otel-collector
spec:
replicas: 1
selector:
matchLabels:
app: otel-collector
template:
metadata:
labels:
app: otel-collector
spec:
containers:
- name: otel-collector
image: otel/opentelemetry-collector-contrib:latest
ports:
- containerPort: 4318
- containerPort: 8889
volumeMounts:
- name: config
mountPath: /etc/otelcol-contrib
volumes:
- name: config
configMap:
name: otel-collector-config
```
</Tab>
<Tab title="Helm">
```bash
helm repo add open-telemetry https://open-telemetry.github.io/opentelemetry-helm-charts
helm install otel-collector open-telemetry/opentelemetry-collector \
--set config.receivers.otlp.protocols.http.endpoint=0.0.0.0:4318 \
--set config.exporters.prometheus.endpoint=0.0.0.0:8889
```
</Tab>
</Tabs>
</Tab>
</Tabs>
## Available Metrics
Infisical exposes the following key metrics in OpenTelemetry format:
### Core API Metrics
These metrics track all HTTP API requests to Infisical, including request counts, latency, and errors. Use these to monitor overall API health, identify performance bottlenecks, and track usage patterns across users and machine identities.
<AccordionGroup>
<Accordion title="Total API Requests">
**Metric Name**: `infisical.http.server.request.count`
**Type**: Counter
**Unit**: `{request}`
**Description**: Total number of API requests to Infisical (covers both human users and machine identities)
**Attributes**:
- `infisical.organization.id` (string): Organization ID
- `infisical.organization.name` (string): Organization name (e.g., "Platform Engineering Team")
- `infisical.user.id` (string, optional): User ID if human user
- `infisical.user.email` (string, optional): User email (e.g., "jane.doe@cisco.com")
- `infisical.identity.id` (string, optional): Machine identity ID
- `infisical.identity.name` (string, optional): Machine identity name (e.g., "prod-k8s-operator")
- `infisical.auth.method` (string, optional): Auth method used
- `http.request.method` (string): HTTP method (GET, POST, PUT, DELETE)
- `http.route` (string): API endpoint route pattern
- `http.response.status_code` (int): HTTP status code
- `infisical.project.id` (string, optional): Project ID
- `infisical.project.name` (string, optional): Project name
- `user_agent.original` (string, optional): User agent string
- `client.address` (string, optional): IP address
</Accordion>
<Accordion title="Request Duration">
**Metric Name**: `infisical.http.server.request.duration`
**Type**: Histogram
**Unit**: `s` (seconds)
**Description**: API request latency
**Buckets**: [0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10]
**Attributes**:
- `infisical.organization.id` (string): Organization ID
- `infisical.organization.name` (string): Organization name
- `infisical.user.id` (string, optional): User ID if human user
- `infisical.user.email` (string, optional): User email
- `infisical.identity.id` (string, optional): Machine identity ID
- `infisical.identity.name` (string, optional): Machine identity name
- `http.request.method` (string): HTTP method
- `http.route` (string): API endpoint route pattern
- `http.response.status_code` (int): HTTP status code
- `infisical.project.id` (string, optional): Project ID
- `infisical.project.name` (string, optional): Project name
</Accordion>
<Accordion title="API Errors by Actor">
**Metric Name**: `infisical.http.server.error.count`
**Type**: Counter
**Unit**: `{error}`
**Description**: API errors grouped by actor (for identifying misconfigured services)
**Attributes**:
- `infisical.organization.id` (string): Organization ID
- `infisical.organization.name` (string): Organization name
- `infisical.user.id` (string, optional): User ID if human
- `infisical.user.email` (string, optional): User email
- `infisical.identity.id` (string, optional): Identity ID if machine
- `infisical.identity.name` (string, optional): Identity name
- `http.route` (string): API endpoint where error occurred
- `http.request.method` (string): HTTP method
- `error.type` (string): Error category/type (client_error, server_error, auth_error, rate_limit_error, etc.)
- `infisical.project.id` (string, optional): Project ID
- `infisical.project.name` (string, optional): Project name
- `client.address` (string, optional): IP address
- `user_agent.original` (string, optional): User agent information
</Accordion>
</AccordionGroup>
### Secret Operations Metrics
These metrics provide visibility into secret access patterns, helping you understand which secrets are being accessed, by whom, and from where. Essential for security auditing and access pattern analysis.
<AccordionGroup>
<Accordion title="Secret Read Operations">
**Metric Name**: `infisical.secret.read.count`
**Type**: Counter
**Unit**: `{operation}`
**Description**: Number of secret read operations
**Attributes**:
- `infisical.organization.id` (string): Organization ID
- `infisical.organization.name` (string): Organization name
- `infisical.project.id` (string): Project ID
- `infisical.project.name` (string): Project name (e.g., "payment-service-secrets")
- `infisical.environment` (string): Environment (dev, staging, prod)
- `infisical.secret.path` (string): Path to secrets (e.g., "/microservice-a/database")
- `infisical.secret.name` (string, optional): Name of secret
- `infisical.user.id` (string, optional): User ID if human
- `infisical.user.email` (string, optional): User email
- `infisical.identity.id` (string, optional): Machine identity ID
- `infisical.identity.name` (string, optional): Machine identity name
- `user_agent.original` (string, optional): User agent/SDK information
- `client.address` (string, optional): IP address
</Accordion>
</AccordionGroup>
### Authentication Metrics
These metrics track authentication attempts and outcomes, enabling you to monitor login success rates, detect potential security threats, and identify authentication issues.
<AccordionGroup>
<Accordion title="Login Attempts">
**Metric Name**: `infisical.auth.attempt.count`
**Type**: Counter
**Unit**: `{attempt}`
**Description**: Authentication attempts (both successful and failed)
**Attributes**:
- `infisical.organization.id` (string): Organization ID
- `infisical.organization.name` (string): Organization name
- `infisical.user.id` (string, optional): User ID if human (if identifiable)
- `infisical.user.email` (string, optional): User email (if identifiable)
- `infisical.identity.id` (string, optional): Identity ID if machine (if identifiable)
- `infisical.identity.name` (string, optional): Identity name (if identifiable)
- `infisical.auth.method` (string): Authentication method attempted
- `infisical.auth.result` (string): success or failure
- `error.type` (string, optional): Reason for failure if failed (invalid_credentials, expired_token, invalid_token, etc.)
- `client.address` (string): IP address
- `user_agent.original` (string, optional): User agent/client information
- `infisical.auth.attempt.username` (string, optional): Attempted username/email (if available)
</Accordion>
</AccordionGroup>
### Integration & Secret Sync Metrics
These metrics monitor secret synchronization operations between Infisical and external systems, helping you track sync health, identify integration failures, and troubleshoot connectivity issues.
<AccordionGroup>
<Accordion title="integration_secret_sync_errors">
Integration secret sync error count
- **Labels**: `version`, `integration`, `integrationId`, `type`, `status`, `name`, `projectId`
- **Example**: Monitor integration sync failures across different services
</Accordion>
<Accordion title="secret_sync_sync_secrets_errors">
Secret sync operation error count
- **Labels**: `version`, `destination`, `syncId`, `projectId`, `type`, `status`, `name`
- **Example**: Track secret sync failures to external systems
</Accordion>
<Accordion title="secret_sync_import_secrets_errors">
Secret import operation error count
- **Labels**: `version`, `destination`, `syncId`, `projectId`, `type`, `status`, `name`
- **Example**: Monitor secret import failures
</Accordion>
<Accordion title="secret_sync_remove_secrets_errors">
Secret removal operation error count
- **Labels**: `version`, `destination`, `syncId`, `projectId`, `type`, `status`, `name`
- **Example**: Track secret removal operation failures
</Accordion>
</AccordionGroup>
### System Metrics
These low-level HTTP metrics are automatically collected by OpenTelemetry's instrumentation layer, providing baseline performance data for all HTTP traffic.
<AccordionGroup>
<Accordion title="http_server_duration">
HTTP server request duration metrics (histogram buckets, count, sum)
</Accordion>
<Accordion title="http_client_duration">
HTTP client request duration metrics (histogram buckets, count, sum)
</Accordion>
</AccordionGroup>
## Troubleshooting
<Accordion title="Metrics not appearing">
If your metrics are not showing up in Prometheus or your monitoring system, check the following:
- Verify `OTEL_TELEMETRY_COLLECTION_ENABLED=true` is set in your Infisical environment variables
- Ensure the correct `OTEL_EXPORT_TYPE` is set (`prometheus` or `otlp`)
- Check network connectivity between Infisical and your monitoring services (Prometheus or OTLP collector)
- For pull-based monitoring: Verify port 9464 is exposed and accessible
- For push-based monitoring: Verify the OTLP endpoint URL is correct and reachable
- Check Infisical backend logs for any errors related to metrics export
</Accordion>
<Accordion title="Authentication errors">
If you're experiencing authentication errors with the OpenTelemetry Collector:
- Verify basic auth credentials in your OTLP configuration match between Infisical and the collector
- Check that `OTEL_COLLECTOR_BASIC_AUTH_USERNAME` and `OTEL_COLLECTOR_BASIC_AUTH_PASSWORD` match the credentials in your `otel-collector-config.yaml`
- Ensure the htpasswd format in the collector configuration is correct
- Test the collector endpoint manually using curl with the same credentials to verify they work
</Accordion>