mirror of
https://github.com/LTTLabsOSS/markbench-tests.git
synced 2026-01-08 21:48:00 -05:00
237 lines
8.1 KiB
Python
237 lines
8.1 KiB
Python
"""UL Procyon Computer Vision test script"""
|
|
# pylint: disable=no-name-in-module
|
|
from argparse import ArgumentParser
|
|
import logging
|
|
from pathlib import Path
|
|
import subprocess
|
|
import sys
|
|
import time
|
|
import psutil
|
|
from utils import (
|
|
find_score_in_xml,
|
|
is_process_running,
|
|
get_install_path,
|
|
find_procyon_version,
|
|
find_test_version
|
|
|
|
)
|
|
|
|
PARENT_DIR = str(Path(sys.path[0], ".."))
|
|
sys.path.append(PARENT_DIR)
|
|
|
|
from harness_utils.output import (
|
|
DEFAULT_DATE_FORMAT,
|
|
DEFAULT_LOGGING_FORMAT,
|
|
seconds_to_milliseconds,
|
|
setup_log_directory,
|
|
write_report_json,
|
|
)
|
|
from harness_utils.procyoncmd import (
|
|
get_winml_devices,
|
|
get_openvino_devices,
|
|
get_openvino_gpu,
|
|
get_cuda_devices,
|
|
)
|
|
#####
|
|
# Globals
|
|
#####
|
|
SCRIPT_DIR = Path(__file__).resolve().parent
|
|
LOG_DIR = SCRIPT_DIR / "run"
|
|
DIR_PROCYON = Path(get_install_path())
|
|
EXECUTABLE = "ProcyonCmd.exe"
|
|
ABS_EXECUTABLE_PATH = DIR_PROCYON / EXECUTABLE
|
|
|
|
WINML_DEVICES = get_winml_devices(ABS_EXECUTABLE_PATH)
|
|
OPENVINO_DEVICES = get_openvino_devices(ABS_EXECUTABLE_PATH)
|
|
CUDA_DEVICES = get_cuda_devices(ABS_EXECUTABLE_PATH)
|
|
|
|
CONFIG_DIR = SCRIPT_DIR / "config"
|
|
BENCHMARK_CONFIG = {
|
|
"AMD_CPU": {
|
|
"config": f"\"{CONFIG_DIR}\\ai_computer_vision_winml_cpu.def\"",
|
|
"process_name": "WinML.exe",
|
|
"device_name": "CPU",
|
|
# TODO: Find a good way to report the CPU name here.
|
|
"device_id": "CPU",
|
|
"test_name": "cpu_float32",
|
|
"api": "winml"
|
|
},
|
|
"AMD_GPU0": {
|
|
"config": f"\"{CONFIG_DIR}\\ai_computer_vision_winml_gpu.def\"",
|
|
"process_name": "WinML.exe",
|
|
"device_name": list(WINML_DEVICES.keys())[0],
|
|
"device_id": list(WINML_DEVICES.values())[0],
|
|
"test_name": "gpu_float32",
|
|
"api": "winml"
|
|
},
|
|
"AMD_GPU1": {
|
|
"config": f"\"{CONFIG_DIR}\\ai_computer_vision_winml_gpu.def\"",
|
|
"process_name": "WinML.exe",
|
|
"device_name": list(WINML_DEVICES.keys())[1] if len(list(WINML_DEVICES.keys())) > 1 else list(WINML_DEVICES.keys())[0],
|
|
"device_id": list(WINML_DEVICES.values())[1] if len(list(WINML_DEVICES.values())) > 1 else list(WINML_DEVICES.values())[0],
|
|
"test_name": "gpu_float32",
|
|
"api": "winml"
|
|
},
|
|
"Intel_CPU": {
|
|
"config": f"\"{CONFIG_DIR}\\ai_computer_vision_openvino_cpu.def\"",
|
|
"process_name": "OpenVino.exe",
|
|
"device_id": "CPU",
|
|
"device_name": OPENVINO_DEVICES["CPU"],
|
|
"test_name": "cpu_float32",
|
|
"api": "openvino"
|
|
},
|
|
"Intel_GPU0": {
|
|
"config": f"\"{CONFIG_DIR}\\ai_computer_vision_openvino_gpu.def\"",
|
|
"process_name": "OpenVino.exe",
|
|
"device_id": "GPU.0" if "GPU.0" in list(OPENVINO_DEVICES.keys()) else "GPU",
|
|
"device_name": get_openvino_gpu(OPENVINO_DEVICES, "GPU.0"),
|
|
"test_name": "gpu_float32",
|
|
"api": "openvino"
|
|
},
|
|
"Intel_GPU1": {
|
|
"config": f"\"{CONFIG_DIR}\\ai_computer_vision_openvino_gpu.def\"",
|
|
"process_name": "OpenVino.exe",
|
|
"device_id": "GPU.1" if "GPU.1" in list(OPENVINO_DEVICES.keys()) else "GPU",
|
|
"device_name": get_openvino_gpu(OPENVINO_DEVICES, "GPU.0"),
|
|
"test_name": "gpu_float32",
|
|
"api": "openvino"
|
|
},
|
|
"Intel_NPU": {
|
|
"config": f"\"{CONFIG_DIR}\\ai_computer_vision_openvino_npu.def\"",
|
|
"process_name": "OpenVino.exe",
|
|
"device_id": "NPU",
|
|
"device_name": OPENVINO_DEVICES.get("NPU", "None"),
|
|
"test_name": "npu_float32",
|
|
"api": "openvino"
|
|
},
|
|
"NVIDIA_GPU": {
|
|
"config": f"\"{CONFIG_DIR}\\ai_computer_vision_tensorrt.def\"",
|
|
"device_id": "cuda:0",
|
|
"device_name": CUDA_DEVICES.get("cuda:0"),
|
|
"process_name": "TensorRT.exe",
|
|
"test_name": "gpu_float32",
|
|
"api": "tensorrt"
|
|
},
|
|
"Qualcomm_HTP": {
|
|
"config": f"\"{CONFIG_DIR}\\ai_computer_vision_snpe.def\"",
|
|
"device_id": "CPU",
|
|
"device_name": "CPU",
|
|
"process_name": "SNPE.exe",
|
|
"test_name": "htp_integer",
|
|
"api": "snpe"
|
|
},
|
|
}
|
|
|
|
|
|
RESULTS_FILENAME = "result.xml"
|
|
REPORT_PATH = LOG_DIR / RESULTS_FILENAME
|
|
|
|
|
|
def setup_logging():
|
|
"""setup logging"""
|
|
setup_log_directory(str(LOG_DIR))
|
|
logging.basicConfig(filename=LOG_DIR / "harness.log",
|
|
format=DEFAULT_LOGGING_FORMAT,
|
|
datefmt=DEFAULT_DATE_FORMAT,
|
|
level=logging.DEBUG)
|
|
console = logging.StreamHandler()
|
|
formatter = logging.Formatter(DEFAULT_LOGGING_FORMAT)
|
|
console.setFormatter(formatter)
|
|
logging.getLogger('').addHandler(console)
|
|
|
|
|
|
def get_arguments():
|
|
"""get arguments"""
|
|
parser = ArgumentParser()
|
|
parser.add_argument(
|
|
"--engine", dest="engine", help="Engine test type", required=True,
|
|
choices=BENCHMARK_CONFIG.keys())
|
|
argies = parser.parse_args()
|
|
return argies
|
|
|
|
|
|
def create_procyon_command(test_option, process_name, device_id):
|
|
"""create command string"""
|
|
command = str()
|
|
|
|
if device_id == 'CPU':
|
|
command = f'\"{ABS_EXECUTABLE_PATH}\" --definition={test_option} --export=\"{REPORT_PATH}\"'
|
|
else:
|
|
match process_name:
|
|
case 'WinML.exe':
|
|
command = f'\"{ABS_EXECUTABLE_PATH}\" --definition={test_option} --export=\"{REPORT_PATH}\" --select-winml-device {device_id}'
|
|
case 'OpenVino.exe':
|
|
command = f'\"{ABS_EXECUTABLE_PATH}\" --definition={test_option} --export=\"{REPORT_PATH}\" --select-openvino-device {device_id}'
|
|
case 'TensorRT.exe':
|
|
command = f'\"{ABS_EXECUTABLE_PATH}\" --definition={test_option} --export=\"{REPORT_PATH}\" --select-cuda-device {device_id}'
|
|
command = command.rstrip()
|
|
return command
|
|
|
|
|
|
def run_benchmark(process_name, command_to_run):
|
|
"""run the benchmark"""
|
|
with subprocess.Popen(command_to_run, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) as proc:
|
|
logging.info("Procyon AI Computer Vision benchmark has started.")
|
|
while True:
|
|
now = time.time()
|
|
elapsed = now - start_time
|
|
if elapsed >= 60: # seconds
|
|
raise ValueError("BenchMark subprocess did not start in time")
|
|
process = is_process_running(process_name)
|
|
if process is not None:
|
|
process.nice(psutil.HIGH_PRIORITY_CLASS)
|
|
break
|
|
time.sleep(0.2)
|
|
_, _ = proc.communicate() # blocks until 3dmark exits
|
|
return proc
|
|
|
|
|
|
try:
|
|
setup_logging()
|
|
logging.info("Detected Windows ML Devices: %s", str(WINML_DEVICES))
|
|
logging.info("Detected OpenVino Devices: %s", str(OPENVINO_DEVICES))
|
|
logging.info("Detected CUDA Devices: %s", (CUDA_DEVICES))
|
|
|
|
args = get_arguments()
|
|
option = BENCHMARK_CONFIG[args.engine]["config"]
|
|
proc_name = BENCHMARK_CONFIG[args.engine]["process_name"]
|
|
dev_id = BENCHMARK_CONFIG[args.engine]["device_id"]
|
|
cmd = create_procyon_command(option, proc_name, dev_id)
|
|
logging.info('Starting benchmark!')
|
|
logging.info(cmd)
|
|
start_time = time.time()
|
|
pr = run_benchmark(BENCHMARK_CONFIG[args.engine]["process_name"], cmd)
|
|
|
|
if pr.returncode > 0:
|
|
logging.error("Procyon exited with return code %d", pr.returncode)
|
|
sys.exit(pr.returncode)
|
|
|
|
score = find_score_in_xml()
|
|
if score is None:
|
|
logging.error("Could not find overall score!")
|
|
sys.exit(1)
|
|
|
|
end_time = time.time()
|
|
elapsed_test_time = round(end_time - start_time, 2)
|
|
logging.info("Benchmark took %.2f seconds", elapsed_test_time)
|
|
logging.info("Score was %s", score)
|
|
|
|
report = {
|
|
"start_time": seconds_to_milliseconds(start_time),
|
|
"end_time": seconds_to_milliseconds(end_time),
|
|
"test": "Procyon AI CV",
|
|
"test_parameter": BENCHMARK_CONFIG[args.engine]["test_name"],
|
|
"api": BENCHMARK_CONFIG[args.engine]["api"],
|
|
"test_version": find_test_version(),
|
|
"device_name": BENCHMARK_CONFIG[args.engine]["device_name"],
|
|
"procyon_version": find_procyon_version(),
|
|
"unit": "score",
|
|
"score": score
|
|
}
|
|
|
|
write_report_json(str(LOG_DIR), "report.json", report)
|
|
except Exception as e:
|
|
logging.error("Something went wrong running the benchmark!")
|
|
logging.exception(e)
|
|
sys.exit(1)
|