mirror of
https://github.com/factorgroup/nightmarket.git
synced 2026-01-13 23:48:17 -05:00
222 lines
6.6 KiB
Solidity
222 lines
6.6 KiB
Solidity
// SPDX-License-Identifier: MIT
|
|
pragma solidity ^0.8.0;
|
|
pragma experimental ABIEncoderV2;
|
|
|
|
|
|
abstract contract IVerifier {
|
|
function verify(
|
|
uint256[8] memory,
|
|
uint256[<%vk_input_length%>] memory
|
|
) virtual public view returns (bool);
|
|
}
|
|
|
|
library Pairing {
|
|
|
|
uint256 constant PRIME_Q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
|
|
|
|
struct G1Point {
|
|
uint256 x;
|
|
uint256 y;
|
|
}
|
|
|
|
// Encoding of field elements is: X[0] * z + X[1]
|
|
struct G2Point {
|
|
uint256[2] x;
|
|
uint256[2] y;
|
|
}
|
|
|
|
/*
|
|
* @return The negation of p, i.e. p.plus(p.negate()) should be zero.
|
|
*/
|
|
function negate(G1Point memory p) internal pure returns (G1Point memory) {
|
|
|
|
// The prime q in the base field F_q for G1
|
|
if (p.x == 0 && p.y == 0) {
|
|
return G1Point(0, 0);
|
|
} else {
|
|
return G1Point(p.x, PRIME_Q - (p.y % PRIME_Q));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @return The sum of two points of G1
|
|
*/
|
|
function plus(
|
|
G1Point memory p1,
|
|
G1Point memory p2
|
|
) internal view returns (G1Point memory r) {
|
|
|
|
uint256[4] memory input;
|
|
input[0] = p1.x;
|
|
input[1] = p1.y;
|
|
input[2] = p2.x;
|
|
input[3] = p2.y;
|
|
bool success;
|
|
|
|
// solium-disable-next-line security/no-inline-assembly
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 6, input, 0xc0, r, 0x60)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success case 0 { invalid() }
|
|
}
|
|
|
|
require(success,"pairing-add-failed");
|
|
}
|
|
|
|
/*
|
|
* @return The product of a point on G1 and a scalar, i.e.
|
|
* p == p.scalar_mul(1) and p.plus(p) == p.scalar_mul(2) for all
|
|
* points p.
|
|
*/
|
|
function scalar_mul(G1Point memory p, uint256 s) internal view returns (G1Point memory r) {
|
|
|
|
uint256[3] memory input;
|
|
input[0] = p.x;
|
|
input[1] = p.y;
|
|
input[2] = s;
|
|
bool success;
|
|
// solium-disable-next-line security/no-inline-assembly
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 7, input, 0x80, r, 0x60)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success case 0 { invalid() }
|
|
}
|
|
require (success,"pairing-mul-failed");
|
|
}
|
|
|
|
/* @return The result of computing the pairing check
|
|
* e(p1[0], p2[0]) * .... * e(p1[n], p2[n]) == 1
|
|
* For example,
|
|
* pairing([P1(), P1().negate()], [P2(), P2()]) should return true.
|
|
*/
|
|
function pairing(
|
|
G1Point memory a1,
|
|
G2Point memory a2,
|
|
G1Point memory b1,
|
|
G2Point memory b2,
|
|
G1Point memory c1,
|
|
G2Point memory c2,
|
|
G1Point memory d1,
|
|
G2Point memory d2
|
|
) internal view returns (bool) {
|
|
|
|
G1Point[4] memory p1 = [a1, b1, c1, d1];
|
|
G2Point[4] memory p2 = [a2, b2, c2, d2];
|
|
|
|
uint256 inputSize = 24;
|
|
uint256[] memory input = new uint256[](inputSize);
|
|
|
|
for (uint256 i = 0; i < 4; i++) {
|
|
uint256 j = i * 6;
|
|
input[j + 0] = p1[i].x;
|
|
input[j + 1] = p1[i].y;
|
|
input[j + 2] = p2[i].x[0];
|
|
input[j + 3] = p2[i].x[1];
|
|
input[j + 4] = p2[i].y[0];
|
|
input[j + 5] = p2[i].y[1];
|
|
}
|
|
|
|
uint256[1] memory out;
|
|
bool success;
|
|
|
|
// solium-disable-next-line security/no-inline-assembly
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 8, add(input, 0x20), mul(inputSize, 0x20), out, 0x20)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success case 0 { invalid() }
|
|
}
|
|
|
|
require(success, "pairing-opcode-failed");
|
|
|
|
return out[0] != 0;
|
|
}
|
|
}
|
|
|
|
contract Verifier is IVerifier {
|
|
struct Proof {
|
|
Pairing.G1Point a;
|
|
Pairing.G2Point b;
|
|
Pairing.G1Point c;
|
|
}
|
|
|
|
struct VerifyingKey {
|
|
Pairing.G1Point alpha1;
|
|
Pairing.G2Point beta2;
|
|
Pairing.G2Point gamma2;
|
|
Pairing.G2Point delta2;
|
|
Pairing.G1Point[<%vk_ic_length%>] IC;
|
|
}
|
|
|
|
using Pairing for *;
|
|
|
|
uint256 constant PRIME_Q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
|
|
string constant ERROR_PROOF_Q = "VE1";
|
|
string constant ERROR_INPUT_VAL = "VE2";
|
|
|
|
function verifyingKey() internal pure returns (VerifyingKey memory vk) {
|
|
vk.alpha1 = Pairing.G1Point(<%vk_alpha1%>);
|
|
vk.beta2 = Pairing.G2Point(<%vk_beta2%>);
|
|
vk.gamma2 = Pairing.G2Point(<%vk_gamma2%>);
|
|
vk.delta2 = Pairing.G2Point(<%vk_delta2%>);
|
|
<%vk_ic_pts%>
|
|
}
|
|
|
|
/*
|
|
* @returns Whether the proof is valid given the verifying key and public
|
|
* input. Note that this function only supports one public input.
|
|
* Refer to the Semaphore source code for a verifier that supports
|
|
* multiple public inputs.
|
|
*/
|
|
function verify(
|
|
uint256[8] memory _proof,
|
|
uint256[<%vk_input_length%>] memory input
|
|
) override public view returns (bool) {
|
|
VerifyingKey memory vk = verifyingKey();
|
|
Proof memory proof;
|
|
proof.a = Pairing.G1Point(_proof[0], _proof[1]);
|
|
proof.b = Pairing.G2Point(
|
|
[_proof[2], _proof[3]],
|
|
[_proof[4], _proof[5]]
|
|
);
|
|
proof.c = Pairing.G1Point(_proof[6], _proof[7]);
|
|
|
|
// Make sure that proof.A, B, and C are each less than the prime q
|
|
require(proof.a.x < PRIME_Q, ERROR_PROOF_Q);
|
|
require(proof.a.y < PRIME_Q, ERROR_PROOF_Q);
|
|
|
|
require(proof.b.x[0] < PRIME_Q, ERROR_PROOF_Q);
|
|
require(proof.b.y[0] < PRIME_Q, ERROR_PROOF_Q);
|
|
|
|
require(proof.b.x[1] < PRIME_Q, ERROR_PROOF_Q);
|
|
require(proof.b.y[1] < PRIME_Q, ERROR_PROOF_Q);
|
|
|
|
require(proof.c.x < PRIME_Q, ERROR_PROOF_Q);
|
|
require(proof.c.y < PRIME_Q, ERROR_PROOF_Q);
|
|
|
|
uint256 SNARK_SCALAR_FIELD = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
|
|
|
|
// Compute the linear combination vk_x
|
|
Pairing.G1Point memory vk_x = Pairing.G1Point(0, 0);
|
|
|
|
for (uint256 i = 0; i < <%vk_input_length%>; i++) {
|
|
// Make sure that every input is less than the snark scalar field
|
|
require(input[i] < SNARK_SCALAR_FIELD,"verifier-gte-snark-scalar-field");
|
|
|
|
vk_x = Pairing.plus(vk_x, Pairing.scalar_mul(vk.IC[i + 1], input[i]));
|
|
}
|
|
|
|
vk_x = Pairing.plus(vk_x, vk.IC[0]);
|
|
|
|
return Pairing.pairing(
|
|
Pairing.negate(proof.a),
|
|
proof.b,
|
|
vk.alpha1,
|
|
vk.beta2,
|
|
vk_x,
|
|
vk.gamma2,
|
|
proof.c,
|
|
vk.delta2
|
|
);
|
|
}
|
|
}
|