mirror of
https://github.com/OffchainLabs/prysm.git
synced 2026-01-08 23:18:15 -05:00
Create Container Package for Shared/ Subpackages (#9607)
* ensure run * amend * fix initial sync test target Co-authored-by: prestonvanloon <preston@prysmaticlabs.com> Co-authored-by: prylabs-bulldozer[bot] <58059840+prylabs-bulldozer[bot]@users.noreply.github.com>
This commit is contained in:
365
container/slice/slice.go
Normal file
365
container/slice/slice.go
Normal file
@@ -0,0 +1,365 @@
|
||||
package slice
|
||||
|
||||
import (
|
||||
"strings"
|
||||
|
||||
types "github.com/prysmaticlabs/eth2-types"
|
||||
)
|
||||
|
||||
// SubsetUint64 returns true if the first array is
|
||||
// completely contained in the second array with time
|
||||
// complexity of approximately o(n).
|
||||
func SubsetUint64(a, b []uint64) bool {
|
||||
if len(a) > len(b) {
|
||||
return false
|
||||
}
|
||||
|
||||
set := make(map[uint64]uint64, len(b))
|
||||
for _, v := range b {
|
||||
set[v]++
|
||||
}
|
||||
|
||||
for _, v := range a {
|
||||
if count, found := set[v]; !found {
|
||||
return false
|
||||
} else if count < 1 {
|
||||
return false
|
||||
} else {
|
||||
set[v] = count - 1
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// IntersectionUint64 of any number of uint64 slices with time
|
||||
// complexity of approximately O(n) leveraging a map to
|
||||
// check for element existence off by a constant factor
|
||||
// of underlying map efficiency.
|
||||
func IntersectionUint64(s ...[]uint64) []uint64 {
|
||||
if len(s) == 0 {
|
||||
return []uint64{}
|
||||
}
|
||||
if len(s) == 1 {
|
||||
return s[0]
|
||||
}
|
||||
intersect := make([]uint64, 0)
|
||||
m := make(map[uint64]int)
|
||||
for _, k := range s[0] {
|
||||
m[k] = 1
|
||||
}
|
||||
for i, num := 1, len(s); i < num; i++ {
|
||||
for _, k := range s[i] {
|
||||
// Increment and check only if item is present in both, and no increment has happened yet.
|
||||
if _, found := m[k]; found && i == m[k] {
|
||||
m[k]++
|
||||
if m[k] == num {
|
||||
intersect = append(intersect, k)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return intersect
|
||||
}
|
||||
|
||||
// UnionUint64 of any number of uint64 slices with time
|
||||
// complexity of approximately O(n) leveraging a map to
|
||||
// check for element existence off by a constant factor
|
||||
// of underlying map efficiency.
|
||||
func UnionUint64(s ...[]uint64) []uint64 {
|
||||
if len(s) == 0 {
|
||||
return []uint64{}
|
||||
}
|
||||
if len(s) == 1 {
|
||||
return s[0]
|
||||
}
|
||||
set := s[0]
|
||||
m := make(map[uint64]bool)
|
||||
for i := 1; i < len(s); i++ {
|
||||
a := s[i-1]
|
||||
b := s[i]
|
||||
for j := 0; j < len(a); j++ {
|
||||
m[a[j]] = true
|
||||
}
|
||||
for j := 0; j < len(b); j++ {
|
||||
if _, found := m[b[j]]; !found {
|
||||
set = append(set, b[j])
|
||||
}
|
||||
}
|
||||
}
|
||||
return set
|
||||
}
|
||||
|
||||
// SetUint64 returns a slice with only unique
|
||||
// values from the provided list of indices.
|
||||
func SetUint64(a []uint64) []uint64 {
|
||||
// Remove duplicates indices.
|
||||
intMap := map[uint64]bool{}
|
||||
cleanedIndices := make([]uint64, 0, len(a))
|
||||
for _, idx := range a {
|
||||
if intMap[idx] {
|
||||
continue
|
||||
}
|
||||
intMap[idx] = true
|
||||
cleanedIndices = append(cleanedIndices, idx)
|
||||
}
|
||||
return cleanedIndices
|
||||
}
|
||||
|
||||
// IsUint64Sorted verifies if a uint64 slice is sorted in ascending order.
|
||||
func IsUint64Sorted(a []uint64) bool {
|
||||
if len(a) == 0 || len(a) == 1 {
|
||||
return true
|
||||
}
|
||||
for i := 1; i < len(a); i++ {
|
||||
if a[i-1] > a[i] {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// NotUint64 returns the uint64 in slice b that are
|
||||
// not in slice a with time complexity of approximately
|
||||
// O(n) leveraging a map to check for element existence
|
||||
// off by a constant factor of underlying map efficiency.
|
||||
func NotUint64(a, b []uint64) []uint64 {
|
||||
set := make([]uint64, 0)
|
||||
m := make(map[uint64]bool)
|
||||
|
||||
for i := 0; i < len(a); i++ {
|
||||
m[a[i]] = true
|
||||
}
|
||||
for i := 0; i < len(b); i++ {
|
||||
if _, found := m[b[i]]; !found {
|
||||
set = append(set, b[i])
|
||||
}
|
||||
}
|
||||
return set
|
||||
}
|
||||
|
||||
// IsInUint64 returns true if a is in b and False otherwise.
|
||||
func IsInUint64(a uint64, b []uint64) bool {
|
||||
for _, v := range b {
|
||||
if a == v {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// IntersectionInt64 of any number of int64 slices with time
|
||||
// complexity of approximately O(n) leveraging a map to
|
||||
// check for element existence off by a constant factor
|
||||
// of underlying map efficiency.
|
||||
func IntersectionInt64(s ...[]int64) []int64 {
|
||||
if len(s) == 0 {
|
||||
return []int64{}
|
||||
}
|
||||
if len(s) == 1 {
|
||||
return s[0]
|
||||
}
|
||||
intersect := make([]int64, 0)
|
||||
m := make(map[int64]int)
|
||||
for _, k := range s[0] {
|
||||
m[k] = 1
|
||||
}
|
||||
for i, num := 1, len(s); i < num; i++ {
|
||||
for _, k := range s[i] {
|
||||
if _, found := m[k]; found && i == m[k] {
|
||||
m[k]++
|
||||
if m[k] == num {
|
||||
intersect = append(intersect, k)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return intersect
|
||||
}
|
||||
|
||||
// UnionInt64 of any number of int64 slices with time
|
||||
// complexity of approximately O(n) leveraging a map to
|
||||
// check for element existence off by a constant factor
|
||||
// of underlying map efficiency.
|
||||
func UnionInt64(s ...[]int64) []int64 {
|
||||
if len(s) == 0 {
|
||||
return []int64{}
|
||||
}
|
||||
if len(s) == 1 {
|
||||
return s[0]
|
||||
}
|
||||
set := s[0]
|
||||
m := make(map[int64]bool)
|
||||
for i := 1; i < len(s); i++ {
|
||||
a := s[i-1]
|
||||
b := s[i]
|
||||
for j := 0; j < len(a); j++ {
|
||||
m[a[j]] = true
|
||||
}
|
||||
for j := 0; j < len(b); j++ {
|
||||
if _, found := m[b[j]]; !found {
|
||||
set = append(set, b[j])
|
||||
}
|
||||
}
|
||||
}
|
||||
return set
|
||||
}
|
||||
|
||||
// NotInt64 returns the int64 in slice a that are
|
||||
// not in slice b with time complexity of approximately
|
||||
// O(n) leveraging a map to check for element existence
|
||||
// off by a constant factor of underlying map efficiency.
|
||||
func NotInt64(a, b []int64) []int64 {
|
||||
set := make([]int64, 0)
|
||||
m := make(map[int64]bool)
|
||||
|
||||
for i := 0; i < len(a); i++ {
|
||||
m[a[i]] = true
|
||||
}
|
||||
for i := 0; i < len(b); i++ {
|
||||
if _, found := m[b[i]]; !found {
|
||||
set = append(set, b[i])
|
||||
}
|
||||
}
|
||||
return set
|
||||
}
|
||||
|
||||
// IsInInt64 returns true if a is in b and False otherwise.
|
||||
func IsInInt64(a int64, b []int64) bool {
|
||||
for _, v := range b {
|
||||
if a == v {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
// UnionByteSlices returns the all elements between sets of byte slices.
|
||||
func UnionByteSlices(s ...[][]byte) [][]byte {
|
||||
if len(s) == 0 {
|
||||
return [][]byte{}
|
||||
}
|
||||
if len(s) == 1 {
|
||||
return s[0]
|
||||
}
|
||||
set := s[0]
|
||||
m := make(map[string]bool)
|
||||
for i := 1; i < len(s); i++ {
|
||||
for j := 0; j < len(s[i-1]); j++ {
|
||||
m[string(s[i-1][j])] = true
|
||||
}
|
||||
for j := 0; j < len(s[i]); j++ {
|
||||
if _, found := m[string(s[i][j])]; !found {
|
||||
set = append(set, s[i][j])
|
||||
}
|
||||
}
|
||||
}
|
||||
return set
|
||||
}
|
||||
|
||||
// IntersectionByteSlices returns the common elements between sets of byte slices.
|
||||
func IntersectionByteSlices(s ...[][]byte) [][]byte {
|
||||
if len(s) == 0 {
|
||||
return [][]byte{}
|
||||
}
|
||||
if len(s) == 1 {
|
||||
return s[0]
|
||||
}
|
||||
inter := make([][]byte, 0)
|
||||
m := make(map[string]int)
|
||||
for _, k := range s[0] {
|
||||
m[string(k)] = 1
|
||||
}
|
||||
for i, num := 1, len(s); i < num; i++ {
|
||||
for _, k := range s[i] {
|
||||
if _, found := m[string(k)]; found && i == m[string(k)] {
|
||||
m[string(k)]++
|
||||
if m[string(k)] == num {
|
||||
inter = append(inter, k)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return inter
|
||||
}
|
||||
|
||||
// SplitCommaSeparated values from the list. Example: []string{"a,b", "c,d"} becomes []string{"a", "b", "c", "d"}.
|
||||
func SplitCommaSeparated(arr []string) []string {
|
||||
var result []string
|
||||
for _, val := range arr {
|
||||
result = append(result, strings.Split(val, ",")...)
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// SplitOffset returns the start index of a given list splits into chunks,
|
||||
// it computes (listsize * index) / chunks.
|
||||
//
|
||||
// Spec pseudocode definition:
|
||||
// def get_split_offset(list_size: int, chunks: int, index: int) -> int:
|
||||
// """
|
||||
// Returns a value such that for a list L, chunk count k and index i,
|
||||
// split(L, k)[i] == L[get_split_offset(len(L), k, i): get_split_offset(len(L), k, i+1)]
|
||||
// """
|
||||
// return (list_size * index) // chunks
|
||||
func SplitOffset(listSize, chunks, index uint64) uint64 {
|
||||
return (listSize * index) / chunks
|
||||
}
|
||||
|
||||
// IntersectionSlot of any number of types.Slot slices with time
|
||||
// complexity of approximately O(n) leveraging a map to
|
||||
// check for element existence off by a constant factor
|
||||
// of underlying map efficiency.
|
||||
func IntersectionSlot(s ...[]types.Slot) []types.Slot {
|
||||
if len(s) == 0 {
|
||||
return []types.Slot{}
|
||||
}
|
||||
if len(s) == 1 {
|
||||
return s[0]
|
||||
}
|
||||
intersect := make([]types.Slot, 0)
|
||||
m := make(map[types.Slot]int)
|
||||
for _, k := range s[0] {
|
||||
m[k] = 1
|
||||
}
|
||||
for i, num := 1, len(s); i < num; i++ {
|
||||
for _, k := range s[i] {
|
||||
// Increment and check only if item is present in both, and no increment has happened yet.
|
||||
if _, found := m[k]; found && i == m[k] {
|
||||
m[k]++
|
||||
if m[k] == num {
|
||||
intersect = append(intersect, k)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return intersect
|
||||
}
|
||||
|
||||
// NotSlot returns the types.Slot in slice b that are
|
||||
// not in slice a with time complexity of approximately
|
||||
// O(n) leveraging a map to check for element existence
|
||||
// off by a constant factor of underlying map efficiency.
|
||||
func NotSlot(a, b []types.Slot) []types.Slot {
|
||||
set := make([]types.Slot, 0)
|
||||
m := make(map[types.Slot]bool)
|
||||
|
||||
for i := 0; i < len(a); i++ {
|
||||
m[a[i]] = true
|
||||
}
|
||||
for i := 0; i < len(b); i++ {
|
||||
if _, found := m[b[i]]; !found {
|
||||
set = append(set, b[i])
|
||||
}
|
||||
}
|
||||
return set
|
||||
}
|
||||
|
||||
// IsInSlots returns true if a is in b and False otherwise.
|
||||
func IsInSlots(a types.Slot, b []types.Slot) bool {
|
||||
for _, v := range b {
|
||||
if a == v {
|
||||
return true
|
||||
}
|
||||
}
|
||||
return false
|
||||
}
|
||||
Reference in New Issue
Block a user