package blockchain import ( "context" "fmt" "time" "github.com/OffchainLabs/go-bitfield" "github.com/OffchainLabs/prysm/v7/beacon-chain/core/blocks" "github.com/OffchainLabs/prysm/v7/beacon-chain/core/helpers" "github.com/OffchainLabs/prysm/v7/beacon-chain/core/peerdas" coreTime "github.com/OffchainLabs/prysm/v7/beacon-chain/core/time" "github.com/OffchainLabs/prysm/v7/beacon-chain/core/transition" "github.com/OffchainLabs/prysm/v7/beacon-chain/das" "github.com/OffchainLabs/prysm/v7/beacon-chain/db/filesystem" forkchoicetypes "github.com/OffchainLabs/prysm/v7/beacon-chain/forkchoice/types" "github.com/OffchainLabs/prysm/v7/beacon-chain/state" "github.com/OffchainLabs/prysm/v7/config/features" fieldparams "github.com/OffchainLabs/prysm/v7/config/fieldparams" "github.com/OffchainLabs/prysm/v7/config/params" consensusblocks "github.com/OffchainLabs/prysm/v7/consensus-types/blocks" "github.com/OffchainLabs/prysm/v7/consensus-types/interfaces" "github.com/OffchainLabs/prysm/v7/consensus-types/primitives" "github.com/OffchainLabs/prysm/v7/crypto/bls" "github.com/OffchainLabs/prysm/v7/encoding/bytesutil" "github.com/OffchainLabs/prysm/v7/monitoring/tracing" "github.com/OffchainLabs/prysm/v7/monitoring/tracing/trace" ethpb "github.com/OffchainLabs/prysm/v7/proto/prysm/v1alpha1" "github.com/OffchainLabs/prysm/v7/proto/prysm/v1alpha1/attestation" "github.com/OffchainLabs/prysm/v7/runtime/version" "github.com/OffchainLabs/prysm/v7/time/slots" "github.com/pkg/errors" "github.com/sirupsen/logrus" ) // A custom slot deadline for processing state slots in our cache. const slotDeadline = 5 * time.Second // A custom deadline for deposit trie insertion. const depositDeadline = 20 * time.Second // This defines size of the upper bound for initial sync block cache. var initialSyncBlockCacheSize = uint64(2 * params.BeaconConfig().SlotsPerEpoch) // postBlockProcessConfig is a structure that contains the data needed to // process the beacon block after validating the state transition function type postBlockProcessConfig struct { ctx context.Context roblock consensusblocks.ROBlock headRoot [32]byte postState state.BeaconState isValidPayload bool } // postBlockProcess is called when a gossip block is received. This function performs // several duties most importantly informing the engine if head was updated, // saving the new head information to the blockchain package and // handling attestations, slashings and similar included in the block. func (s *Service) postBlockProcess(cfg *postBlockProcessConfig) error { ctx, span := trace.StartSpan(cfg.ctx, "blockChain.onBlock") defer span.End() cfg.ctx = ctx if err := consensusblocks.BeaconBlockIsNil(cfg.roblock); err != nil { return invalidBlock{error: err} } startTime := time.Now() fcuArgs := &fcuConfig{} if s.inRegularSync() { defer s.handleSecondFCUCall(cfg, fcuArgs) } if features.Get().EnableLightClient && slots.ToEpoch(s.CurrentSlot()) >= params.BeaconConfig().AltairForkEpoch { defer s.processLightClientUpdates(cfg) } defer reportProcessingTime(startTime) defer reportAttestationInclusion(cfg.roblock.Block()) err := s.cfg.ForkChoiceStore.InsertNode(ctx, cfg.postState, cfg.roblock) if err != nil { // Do not use parent context in the event it deadlined ctx = trace.NewContext(context.Background(), span) s.rollbackBlock(ctx, cfg.roblock.Root()) return errors.Wrapf(err, "could not insert block %d to fork choice store", cfg.roblock.Block().Slot()) } if err := s.handleBlockAttestations(ctx, cfg.roblock.Block(), cfg.postState); err != nil { return errors.Wrap(err, "could not handle block's attestations") } s.InsertSlashingsToForkChoiceStore(ctx, cfg.roblock.Block().Body().AttesterSlashings()) if cfg.isValidPayload { if err := s.cfg.ForkChoiceStore.SetOptimisticToValid(ctx, cfg.roblock.Root()); err != nil { return errors.Wrap(err, "could not set optimistic block to valid") } } defer s.sendStateFeedOnBlock(cfg) // only send event after successful insertion start := time.Now() cfg.headRoot, err = s.cfg.ForkChoiceStore.Head(ctx) if err != nil { log.WithError(err).Warn("Could not update head") } newBlockHeadElapsedTime.Observe(float64(time.Since(start).Milliseconds())) if cfg.headRoot != cfg.roblock.Root() { s.logNonCanonicalBlockReceived(cfg.roblock.Root(), cfg.headRoot) return nil } if err := s.getFCUArgs(cfg, fcuArgs); err != nil { log.WithError(err).Error("Could not get forkchoice update argument") return nil } if err := s.sendFCU(cfg, fcuArgs); err != nil { return errors.Wrap(err, "could not send FCU to engine") } return nil } func getStateVersionAndPayload(st state.BeaconState) (int, interfaces.ExecutionData, error) { if st == nil { return 0, nil, errors.New("nil state") } var preStateHeader interfaces.ExecutionData var err error preStateVersion := st.Version() switch preStateVersion { case version.Phase0, version.Altair: default: preStateHeader, err = st.LatestExecutionPayloadHeader() if err != nil { return 0, nil, err } } return preStateVersion, preStateHeader, nil } func (s *Service) onBlockBatch(ctx context.Context, blks []consensusblocks.ROBlock, avs das.AvailabilityStore) error { ctx, span := trace.StartSpan(ctx, "blockChain.onBlockBatch") defer span.End() if len(blks) == 0 { return errors.New("no blocks provided") } if err := consensusblocks.BeaconBlockIsNil(blks[0]); err != nil { return invalidBlock{error: err} } b := blks[0].Block() // Retrieve incoming block's pre state. if err := s.verifyBlkPreState(ctx, b.ParentRoot()); err != nil { return err } preState, err := s.cfg.StateGen.StateByRootInitialSync(ctx, b.ParentRoot()) if err != nil { return err } if preState == nil || preState.IsNil() { return fmt.Errorf("nil pre state for slot %d", b.Slot()) } // Fill in missing blocks if err := s.fillInForkChoiceMissingBlocks(ctx, blks[0], preState.FinalizedCheckpoint(), preState.CurrentJustifiedCheckpoint()); err != nil { return errors.Wrap(err, "could not fill in missing blocks to forkchoice") } jCheckpoints := make([]*ethpb.Checkpoint, len(blks)) fCheckpoints := make([]*ethpb.Checkpoint, len(blks)) sigSet := bls.NewSet() type versionAndHeader struct { version int header interfaces.ExecutionData } preVersionAndHeaders := make([]*versionAndHeader, len(blks)) postVersionAndHeaders := make([]*versionAndHeader, len(blks)) var set *bls.SignatureBatch boundaries := make(map[[32]byte]state.BeaconState) for i, b := range blks { if features.BlacklistedBlock(b.Root()) { return errBlacklistedRoot } v, h, err := getStateVersionAndPayload(preState) if err != nil { return err } preVersionAndHeaders[i] = &versionAndHeader{ version: v, header: h, } set, preState, err = transition.ExecuteStateTransitionNoVerifyAnySig(ctx, preState, b) if err != nil { return invalidBlock{error: err} } // Save potential boundary states. if slots.IsEpochStart(preState.Slot()) { boundaries[b.Root()] = preState.Copy() } jCheckpoints[i] = preState.CurrentJustifiedCheckpoint() fCheckpoints[i] = preState.FinalizedCheckpoint() v, h, err = getStateVersionAndPayload(preState) if err != nil { return err } postVersionAndHeaders[i] = &versionAndHeader{ version: v, header: h, } sigSet.Join(set) } var verify bool if features.Get().EnableVerboseSigVerification { verify, err = sigSet.VerifyVerbosely() } else { verify, err = sigSet.Verify() } if err != nil { return invalidBlock{error: err} } if !verify { return errors.New("batch block signature verification failed") } // blocks have been verified, save them and call the engine pendingNodes := make([]*forkchoicetypes.BlockAndCheckpoints, len(blks)) var isValidPayload bool for i, b := range blks { root := b.Root() isValidPayload, err = s.notifyNewPayload(ctx, postVersionAndHeaders[i].version, postVersionAndHeaders[i].header, b) if err != nil { return s.handleInvalidExecutionError(ctx, err, root, b.Block().ParentRoot()) } if isValidPayload { if err := s.validateMergeTransitionBlock(ctx, preVersionAndHeaders[i].version, preVersionAndHeaders[i].header, b); err != nil { return err } } if err := s.areSidecarsAvailable(ctx, avs, b); err != nil { return errors.Wrapf(err, "could not validate sidecar availability for block %#x at slot %d", b.Root(), b.Block().Slot()) } args := &forkchoicetypes.BlockAndCheckpoints{Block: b, JustifiedCheckpoint: jCheckpoints[i], FinalizedCheckpoint: fCheckpoints[i]} pendingNodes[i] = args if err := s.saveInitSyncBlock(ctx, root, b); err != nil { tracing.AnnotateError(span, err) return err } if err := s.cfg.BeaconDB.SaveStateSummary(ctx, ðpb.StateSummary{ Slot: b.Block().Slot(), Root: root[:], }); err != nil { tracing.AnnotateError(span, err) return err } if i > 0 && jCheckpoints[i].Epoch > jCheckpoints[i-1].Epoch { if err := s.cfg.BeaconDB.SaveJustifiedCheckpoint(ctx, jCheckpoints[i]); err != nil { tracing.AnnotateError(span, err) return err } } if i > 0 && fCheckpoints[i].Epoch > fCheckpoints[i-1].Epoch { if err := s.updateFinalized(ctx, fCheckpoints[i]); err != nil { tracing.AnnotateError(span, err) return err } } } // Save boundary states that will be useful for forkchoice for r, st := range boundaries { if err := s.cfg.StateGen.SaveState(ctx, r, st); err != nil { return err } } lastB := blks[len(blks)-1] lastBR := lastB.Root() // Also saves the last post state which to be used as pre state for the next batch. if err := s.cfg.StateGen.SaveState(ctx, lastBR, preState); err != nil { return err } // Insert all nodes to forkchoice if err := s.cfg.ForkChoiceStore.InsertChain(ctx, pendingNodes); err != nil { return errors.Wrap(err, "could not insert batch to forkchoice") } // Set their optimistic status if isValidPayload { if err := s.cfg.ForkChoiceStore.SetOptimisticToValid(ctx, lastBR); err != nil { return errors.Wrap(err, "could not set optimistic block to valid") } } arg := &fcuConfig{ headState: preState, headRoot: lastBR, headBlock: lastB, } if _, err := s.notifyForkchoiceUpdate(ctx, arg); err != nil { return err } return s.saveHeadNoDB(ctx, lastB, lastBR, preState, !isValidPayload) } func (s *Service) areSidecarsAvailable(ctx context.Context, avs das.AvailabilityStore, roBlock consensusblocks.ROBlock) error { blockVersion := roBlock.Version() block := roBlock.Block() slot := block.Slot() if blockVersion >= version.Fulu { if err := s.areDataColumnsAvailable(ctx, roBlock.Root(), block); err != nil { return errors.Wrapf(err, "are data columns available for block %#x with slot %d", roBlock.Root(), slot) } return nil } if blockVersion >= version.Deneb { if err := avs.IsDataAvailable(ctx, s.CurrentSlot(), roBlock); err != nil { return errors.Wrapf(err, "could not validate sidecar availability at slot %d", slot) } return nil } return nil } func (s *Service) updateEpochBoundaryCaches(ctx context.Context, st state.BeaconState) error { e := coreTime.CurrentEpoch(st) if err := helpers.UpdateCommitteeCache(ctx, st, e); err != nil { return errors.Wrap(err, "could not update committee cache") } if err := helpers.UpdateProposerIndicesInCache(ctx, st, e); err != nil { return errors.Wrap(err, "could not update proposer index cache") } go func(ep primitives.Epoch) { // Use a custom deadline here, since this method runs asynchronously. // We ignore the parent method's context and instead create a new one // with a custom deadline, therefore using the background context instead. slotCtx, cancel := context.WithTimeout(context.Background(), slotDeadline) defer cancel() if err := helpers.UpdateCommitteeCache(slotCtx, st, ep+1); err != nil { log.WithError(err).Warn("Could not update committee cache") } }(e) // The latest block header is from the previous epoch r, err := st.LatestBlockHeader().HashTreeRoot() if err != nil { log.WithError(err).Error("Could not update proposer index state-root map") return nil } // The proposer indices cache takes the target root for the previous // epoch as key if e > 0 { e = e - 1 } target, err := s.cfg.ForkChoiceStore.TargetRootForEpoch(r, e) if err != nil { log.WithError(err).Error("Could not update proposer index state-root map") return nil } err = helpers.UpdateCachedCheckpointToStateRoot(st, &forkchoicetypes.Checkpoint{Epoch: e, Root: target}) if err != nil { log.WithError(err).Error("Could not update proposer index state-root map") } return nil } // Epoch boundary tasks: it copies the headState and updates the epoch boundary // caches. func (s *Service) handleEpochBoundary(ctx context.Context, slot primitives.Slot, headState state.BeaconState, blockRoot []byte) error { ctx, span := trace.StartSpan(ctx, "blockChain.handleEpochBoundary") defer span.End() // return early if we are advancing to a past epoch if slot < headState.Slot() { return nil } if !slots.IsEpochEnd(slot) { return nil } copied := headState.Copy() copied, err := transition.ProcessSlotsUsingNextSlotCache(ctx, copied, blockRoot, slot+1) if err != nil { return err } return s.updateEpochBoundaryCaches(ctx, copied) } // This feeds in the attestations included in the block to fork choice store. It's allows fork choice store // to gain information on the most current chain. func (s *Service) handleBlockAttestations(ctx context.Context, blk interfaces.ReadOnlyBeaconBlock, st state.BeaconState) error { // Feed in block's attestations to fork choice store. for _, a := range blk.Body().Attestations() { committees, err := helpers.AttestationCommitteesFromState(ctx, st, a) if err != nil { return err } indices, err := attestation.AttestingIndices(a, committees...) if err != nil { return err } r := bytesutil.ToBytes32(a.GetData().BeaconBlockRoot) if s.cfg.ForkChoiceStore.HasNode(r) { s.cfg.ForkChoiceStore.ProcessAttestation(ctx, indices, r, a.GetData().Target.Epoch) } else if features.Get().EnableExperimentalAttestationPool { if err = s.cfg.AttestationCache.Add(a); err != nil { return err } } else if err = s.cfg.AttPool.SaveBlockAttestation(a); err != nil { return err } } return nil } // InsertSlashingsToForkChoiceStore inserts attester slashing indices to fork choice store. // To call this function, it's caller's responsibility to ensure the slashing object is valid. // This function requires a write lock on forkchoice. func (s *Service) InsertSlashingsToForkChoiceStore(ctx context.Context, slashings []ethpb.AttSlashing) { for _, slashing := range slashings { indices := blocks.SlashableAttesterIndices(slashing) for _, index := range indices { s.cfg.ForkChoiceStore.InsertSlashedIndex(ctx, primitives.ValidatorIndex(index)) } } } // This saves post state info to DB or cache. This also saves post state info to fork choice store. // Post state info consists of processed block and state. Do not call this method unless the block and state are verified. func (s *Service) savePostStateInfo(ctx context.Context, r [32]byte, b interfaces.ReadOnlySignedBeaconBlock, st state.BeaconState) error { ctx, span := trace.StartSpan(ctx, "blockChain.savePostStateInfo") defer span.End() if err := s.cfg.BeaconDB.SaveBlock(ctx, b); err != nil { return errors.Wrapf(err, "could not save block from slot %d", b.Block().Slot()) } if err := s.cfg.StateGen.SaveState(ctx, r, st); err != nil { // Do not use parent context in the event it deadlined ctx = trace.NewContext(context.Background(), span) s.rollbackBlock(ctx, r) return errors.Wrap(err, "could not save state") } return nil } // pruneAttsFromPool removes these attestations from the attestation pool // which are covered by attestations from the received block. func (s *Service) pruneAttsFromPool(ctx context.Context, headState state.BeaconState, headBlock interfaces.ReadOnlySignedBeaconBlock) { for _, att := range headBlock.Block().Body().Attestations() { if err := s.pruneCoveredAttsFromPool(ctx, headState, att); err != nil { log.WithError(err).Warn("Could not prune attestations covered by a received block's attestation") } } } func (s *Service) pruneCoveredAttsFromPool(ctx context.Context, headState state.BeaconState, att ethpb.Att) error { switch { case !att.IsAggregated(): return s.cfg.AttPool.DeleteUnaggregatedAttestation(att) case att.Version() == version.Phase0: if features.Get().EnableExperimentalAttestationPool { return errors.Wrap(s.cfg.AttestationCache.DeleteCovered(att), "could not delete covered attestation") } return errors.Wrap(s.cfg.AttPool.DeleteAggregatedAttestation(att), "could not delete aggregated attestation") default: return s.pruneCoveredElectraAttsFromPool(ctx, headState, att) } } // pruneCoveredElectraAttsFromPool handles removing aggregated Electra attestations from the pool after receiving a block. // Because in Electra block attestations can combine aggregates for multiple committees, comparing attestation bits // of a block attestation with attestations bits of an aggregate can cause unexpected results, leading to covered // aggregates not being removed from the pool. // // To make sure aggregates are removed, we decompose the block attestation into dummy aggregates, with each // aggregate accounting for one committee. This allows us to compare aggregates in the same way it's done for // Phase0. Even though we can't provide a valid signature for the dummy aggregate, it does not matter because // signatures play no part in pruning attestations. func (s *Service) pruneCoveredElectraAttsFromPool(ctx context.Context, headState state.BeaconState, att ethpb.Att) error { if att.Version() == version.Phase0 { log.Error("Called pruneCoveredElectraAttsFromPool with a Phase0 attestation") return nil } // We don't want to recompute committees. If they are not cached already, // we allow attestations to stay in the pool. If these attestations are // included in a later block, they will be redundant. But given that // they were not cached in the first place, it's unlikely that they // will be chosen into a block. ok, committees, err := helpers.AttestationCommitteesFromCache(ctx, headState, att) if err != nil { return errors.Wrap(err, "could not get attestation committees") } if !ok { log.Debug("Attestation committees are not cached. Skipping attestation pruning.") return nil } committeeIndices := att.CommitteeBitsVal().BitIndices() offset := uint64(0) // Sanity check as this should never happen if len(committeeIndices) != len(committees) { return errors.New("committee indices and committees have different lengths") } for i, c := range committees { ab := bitfield.NewBitlist(uint64(len(c))) for j := uint64(0); j < uint64(len(c)); j++ { ab.SetBitAt(j, att.GetAggregationBits().BitAt(j+offset)) } cb := primitives.NewAttestationCommitteeBits() cb.SetBitAt(uint64(committeeIndices[i]), true) a := ðpb.AttestationElectra{ AggregationBits: ab, Data: att.GetData(), CommitteeBits: cb, Signature: make([]byte, fieldparams.BLSSignatureLength), } if features.Get().EnableExperimentalAttestationPool { if err = s.cfg.AttestationCache.DeleteCovered(a); err != nil { return errors.Wrap(err, "could not delete covered attestation") } } else if !a.IsAggregated() { if err = s.cfg.AttPool.DeleteUnaggregatedAttestation(a); err != nil { return errors.Wrap(err, "could not delete unaggregated attestation") } } else if err = s.cfg.AttPool.DeleteAggregatedAttestation(a); err != nil { return errors.Wrap(err, "could not delete aggregated attestation") } offset += uint64(len(c)) } return nil } // validateMergeTransitionBlock validates the merge transition block. func (s *Service) validateMergeTransitionBlock(ctx context.Context, stateVersion int, stateHeader interfaces.ExecutionData, blk interfaces.ReadOnlySignedBeaconBlock) error { // Skip validation if block is older than Bellatrix. if blocks.IsPreBellatrixVersion(blk.Block().Version()) { return nil } // Skip validation if block has an empty payload. payload, err := blk.Block().Body().Execution() if err != nil { return invalidBlock{error: err} } isEmpty, err := consensusblocks.IsEmptyExecutionData(payload) if err != nil { return err } if isEmpty { return nil } // Handle case where pre-state is Altair but block contains payload. // To reach here, the block must have contained a valid payload. if blocks.IsPreBellatrixVersion(stateVersion) { return s.validateMergeBlock(ctx, blk) } // Skip validation if the block is not a merge transition block. // To reach here. The payload must be non-empty. If the state header is empty then it's at transition. empty, err := consensusblocks.IsEmptyExecutionData(stateHeader) if err != nil { return err } if !empty { return nil } return s.validateMergeBlock(ctx, blk) } // This routine checks if there is a cached proposer payload ID available for the next slot proposer. // If there is not, it will call forkchoice updated with the correct payload attribute then cache the payload ID. func (s *Service) runLateBlockTasks() { if err := s.waitForSync(); err != nil { log.WithError(err).Error("Failed to wait for initial sync") return } attThreshold := params.BeaconConfig().SecondsPerSlot / 3 ticker := slots.NewSlotTickerWithOffset(s.genesisTime, time.Duration(attThreshold)*time.Second, params.BeaconConfig().SecondsPerSlot) for { select { case <-ticker.C(): s.lateBlockTasks(s.ctx) case <-s.ctx.Done(): log.Debug("Context closed, exiting routine") return } } } // missingBlobIndices uses the expected commitments from the block to determine // which BlobSidecar indices would need to be in the database for DA success. // It returns a map where each key represents a missing BlobSidecar index. // An empty map means we have all indices; a non-empty map can be used to compare incoming // BlobSidecars against the set of known missing sidecars. func missingBlobIndices(store *filesystem.BlobStorage, root [fieldparams.RootLength]byte, expected [][]byte, slot primitives.Slot) (map[uint64]bool, error) { maxBlobsPerBlock := params.BeaconConfig().MaxBlobsPerBlock(slot) if len(expected) == 0 { return nil, nil } if len(expected) > maxBlobsPerBlock { return nil, errMaxBlobsExceeded } indices := store.Summary(root) missing := make(map[uint64]bool, len(expected)) for i := range expected { if len(expected[i]) > 0 && !indices.HasIndex(uint64(i)) { missing[uint64(i)] = true } } return missing, nil } // missingDataColumnIndices uses the expected data columns from the block to determine // which DataColumnSidecar indices would need to be in the database for DA success. // It returns a map where each key represents a missing DataColumnSidecar index. // An empty map means we have all indices; a non-empty map can be used to compare incoming // DataColumns against the set of known missing sidecars. func missingDataColumnIndices(store *filesystem.DataColumnStorage, root [fieldparams.RootLength]byte, expected map[uint64]bool) (map[uint64]bool, error) { if len(expected) == 0 { return nil, nil } if len(expected) > fieldparams.NumberOfColumns { return nil, errMaxDataColumnsExceeded } // Get a summary of the data columns stored in the database. summary := store.Summary(root) // Check all expected data columns against the summary. missing := make(map[uint64]bool) for column := range expected { if !summary.HasIndex(column) { missing[column] = true } } return missing, nil } // isDataAvailable blocks until all sidecars committed to in the block are available, // or an error or context cancellation occurs. A nil result means that the data availability check is successful. // The function will first check the database to see if all sidecars have been persisted. If any // sidecars are missing, it will then read from the sidecar notifier channel for the given root until the channel is // closed, the context hits cancellation/timeout, or notifications have been received for all the missing sidecars. func (s *Service) isDataAvailable( ctx context.Context, roBlock consensusblocks.ROBlock, ) error { block := roBlock.Block() if block == nil { return errors.New("invalid nil beacon block") } root := roBlock.Root() blockVersion := block.Version() if blockVersion >= version.Fulu { return s.areDataColumnsAvailable(ctx, root, block) } if blockVersion >= version.Deneb { return s.areBlobsAvailable(ctx, root, block) } return nil } // areDataColumnsAvailable blocks until all data columns committed to in the block are available, // or an error or context cancellation occurs. A nil result means that the data availability check is successful. func (s *Service) areDataColumnsAvailable( ctx context.Context, root [fieldparams.RootLength]byte, block interfaces.ReadOnlyBeaconBlock, ) error { // We are only required to check within MIN_EPOCHS_FOR_DATA_COLUMN_SIDECARS_REQUESTS blockSlot, currentSlot := block.Slot(), s.CurrentSlot() blockEpoch, currentEpoch := slots.ToEpoch(blockSlot), slots.ToEpoch(currentSlot) if !params.WithinDAPeriod(blockEpoch, currentEpoch) { return nil } body := block.Body() if body == nil { return errors.New("invalid nil beacon block body") } kzgCommitments, err := body.BlobKzgCommitments() if err != nil { return errors.Wrap(err, "blob KZG commitments") } // If block has not commitments there is nothing to wait for. if len(kzgCommitments) == 0 { return nil } // All columns to sample need to be available for the block to be considered available. nodeID := s.cfg.P2P.NodeID() // Get the custody group sampling size for the node. custodyGroupCount, err := s.cfg.P2P.CustodyGroupCount(ctx) if err != nil { return errors.Wrap(err, "custody group count") } // Compute the sampling size. // https://github.com/ethereum/consensus-specs/blob/master/specs/fulu/das-core.md#custody-sampling samplesPerSlot := params.BeaconConfig().SamplesPerSlot samplingSize := max(samplesPerSlot, custodyGroupCount) // Get the peer info for the node. peerInfo, _, err := peerdas.Info(nodeID, samplingSize) if err != nil { return errors.Wrap(err, "peer info") } // Subscribe to newly data columns stored in the database. subscription, identsChan := s.dataColumnStorage.Subscribe() defer subscription.Unsubscribe() // Get the count of data columns we already have in the store. summary := s.dataColumnStorage.Summary(root) storedDataColumnsCount := summary.Count() minimumColumnCountToReconstruct := peerdas.MinimumColumnCountToReconstruct() // As soon as we have enough data column sidecars, we can reconstruct the missing ones. // We don't need to wait for the rest of the data columns to declare the block as available. if storedDataColumnsCount >= minimumColumnCountToReconstruct { return nil } // Get a map of data column indices that are not currently available. missing, err := missingDataColumnIndices(s.dataColumnStorage, root, peerInfo.CustodyColumns) if err != nil { return errors.Wrap(err, "missing data columns") } // If there are no missing indices, all data column sidecars are available. // This is the happy path. if len(missing) == 0 { return nil } if s.startWaitingDataColumnSidecars != nil { s.startWaitingDataColumnSidecars <- true } // Log for DA checks that cross over into the next slot; helpful for debugging. nextSlot, err := slots.StartTime(s.genesisTime, block.Slot()+1) if err != nil { return fmt.Errorf("unable to determine slot start time: %w", err) } // Avoid logging if DA check is called after next slot start. if nextSlot.After(time.Now()) { timer := time.AfterFunc(time.Until(nextSlot), func() { missingCount := uint64(len(missing)) if missingCount == 0 { return } log.WithFields(logrus.Fields{ "slot": block.Slot(), "root": fmt.Sprintf("%#x", root), "columnsExpected": helpers.SortedPrettySliceFromMap(peerInfo.CustodyColumns), "columnsWaiting": helpers.SortedPrettySliceFromMap(missing), }).Warning("Data columns still missing at slot end") }) defer timer.Stop() } for { select { case idents := <-identsChan: if idents.Root != root { // This is not the root we are looking for. continue } for _, index := range idents.Indices { // This is a data column we are expecting. if _, ok := missing[index]; ok { storedDataColumnsCount++ } // As soon as we have more than half of the data columns, we can reconstruct the missing ones. // We don't need to wait for the rest of the data columns to declare the block as available. if storedDataColumnsCount >= minimumColumnCountToReconstruct { return nil } // Remove the index from the missing map. delete(missing, index) // Return if there is no more missing data columns. if len(missing) == 0 { return nil } } case <-ctx.Done(): var missingIndices any = "all" missingIndicesCount := len(missing) if missingIndicesCount < fieldparams.NumberOfColumns { missingIndices = helpers.SortedPrettySliceFromMap(missing) } return errors.Wrapf(ctx.Err(), "data column sidecars slot: %d, BlockRoot: %#x, missing: %v", block.Slot(), root, missingIndices) } } } // areBlobsAvailable blocks until all BlobSidecars committed to in the block are available, // or an error or context cancellation occurs. A nil result means that the data availability check is successful. func (s *Service) areBlobsAvailable(ctx context.Context, root [fieldparams.RootLength]byte, block interfaces.ReadOnlyBeaconBlock) error { blockSlot := block.Slot() // We are only required to check within MIN_EPOCHS_FOR_BLOB_SIDECARS_REQUESTS if !params.WithinDAPeriod(slots.ToEpoch(block.Slot()), slots.ToEpoch(s.CurrentSlot())) { return nil } body := block.Body() if body == nil { return errors.New("invalid nil beacon block body") } kzgCommitments, err := body.BlobKzgCommitments() if err != nil { return errors.Wrap(err, "could not get KZG commitments") } // expected is the number of kzg commitments observed in the block. expected := len(kzgCommitments) if expected == 0 { return nil } // get a map of BlobSidecar indices that are not currently available. missing, err := missingBlobIndices(s.blobStorage, root, kzgCommitments, block.Slot()) if err != nil { return errors.Wrap(err, "missing indices") } // If there are no missing indices, all BlobSidecars are available. if len(missing) == 0 { return nil } // The gossip handler for blobs writes the index of each verified blob referencing the given // root to the channel returned by blobNotifiers.forRoot. nc := s.blobNotifiers.forRoot(root, block.Slot()) // Log for DA checks that cross over into the next slot; helpful for debugging. nextSlot, err := slots.StartTime(s.genesisTime, block.Slot()+1) if err != nil { return fmt.Errorf("unable to determine slot start time: %w", err) } // Avoid logging if DA check is called after next slot start. if nextSlot.After(time.Now()) { nst := time.AfterFunc(time.Until(nextSlot), func() { if len(missing) == 0 { return } log.WithFields(logrus.Fields{ "slot": blockSlot, "root": fmt.Sprintf("%#x", root), "blobsExpected": expected, "blobsWaiting": len(missing), }).Error("Still waiting for blobs DA check at slot end.") }) defer nst.Stop() } for { select { case idx := <-nc: // Delete each index seen in the notification channel. delete(missing, idx) // Read from the channel until there are no more missing sidecars. if len(missing) > 0 { continue } // Once all sidecars have been observed, clean up the notification channel. s.blobNotifiers.delete(root) return nil case <-ctx.Done(): return errors.Wrapf(ctx.Err(), "context deadline waiting for blob sidecars slot: %d, BlockRoot: %#x", block.Slot(), root) } } } // lateBlockTasks is called 4 seconds into the slot and performs tasks // related to late blocks. It emits a MissedSlot state feed event. // It calls FCU and sets the right attributes if we are proposing next slot // it also updates the next slot cache and the proposer index cache to deal with skipped slots. func (s *Service) lateBlockTasks(ctx context.Context) { currentSlot := s.CurrentSlot() if currentSlot == s.HeadSlot() { return } s.cfg.ForkChoiceStore.RLock() defer s.cfg.ForkChoiceStore.RUnlock() // return early if we are in init sync if !s.inRegularSync() { return } s.headLock.RLock() headRoot := s.headRoot() headState := s.headState(ctx) s.headLock.RUnlock() lastRoot, lastState := transition.LastCachedState() if lastState == nil { lastRoot, lastState = headRoot[:], headState } // Copy all the field tries in our cached state in the event of late // blocks. lastState.CopyAllTries() if err := transition.UpdateNextSlotCache(ctx, lastRoot, lastState); err != nil { log.WithError(err).Debug("Could not update next slot state cache") } if err := s.handleEpochBoundary(ctx, currentSlot, headState, headRoot[:]); err != nil { log.WithError(err).Error("Could not update epoch boundary caches") } // return early if we already started building a block for the current // head root _, has := s.cfg.PayloadIDCache.PayloadID(s.CurrentSlot()+1, headRoot) if has { return } attribute := s.getPayloadAttribute(ctx, headState, s.CurrentSlot()+1, headRoot[:]) // return early if we are not proposing next slot if attribute.IsEmpty() { return } s.headLock.RLock() headBlock, err := s.headBlock() if err != nil { s.headLock.RUnlock() log.WithError(err).Debug("could not perform late block tasks: failed to retrieve head block") return } s.headLock.RUnlock() fcuArgs := &fcuConfig{ headState: headState, headRoot: headRoot, headBlock: headBlock, attributes: attribute, } _, err = s.notifyForkchoiceUpdate(ctx, fcuArgs) if err != nil { log.WithError(err).Debug("could not perform late block tasks: failed to update forkchoice with engine") } } // waitForSync blocks until the node is synced to the head. func (s *Service) waitForSync() error { select { case <-s.syncComplete: return nil case <-s.ctx.Done(): return errors.New("context closed, exiting goroutine") } } func (s *Service) handleInvalidExecutionError(ctx context.Context, err error, blockRoot, parentRoot [fieldparams.RootLength]byte) error { if IsInvalidBlock(err) && InvalidBlockLVH(err) != [32]byte{} { return s.pruneInvalidBlock(ctx, blockRoot, parentRoot, InvalidBlockLVH(err)) } return err } // In the event of an issue processing a block we rollback changes done to the db and our caches // to always ensure that the node's internal state is consistent. func (s *Service) rollbackBlock(ctx context.Context, blockRoot [32]byte) { log.Warnf("Rolling back insertion of block with root %#x due to processing error", blockRoot) if err := s.cfg.StateGen.DeleteStateFromCaches(ctx, blockRoot); err != nil { log.WithError(err).Errorf("Could not delete state from caches with block root %#x", blockRoot) } if err := s.cfg.BeaconDB.DeleteBlock(ctx, blockRoot); err != nil { log.WithError(err).Errorf("Could not delete block with block root %#x", blockRoot) } }