Files
prysm/beacon-chain/das/availability_columns.go
kasey 61de11e2c4 Backfill data columns (#15580)
**What type of PR is this?**

Feature

**What does this PR do? Why is it needed?**

Adds data column support to backfill.

**Acknowledgements**

- [x] I have read
[CONTRIBUTING.md](https://github.com/prysmaticlabs/prysm/blob/develop/CONTRIBUTING.md).
- [x] I have included a uniquely named [changelog fragment
file](https://github.com/prysmaticlabs/prysm/blob/develop/CONTRIBUTING.md#maintaining-changelogmd).
- [x] I have added a description to this PR with sufficient context for
reviewers to understand this PR.

---------

Co-authored-by: Kasey <kasey@users.noreply.github.com>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Preston Van Loon <preston@pvl.dev>
2025-12-02 15:19:32 +00:00

245 lines
9.2 KiB
Go

package das
import (
"context"
"io"
"github.com/OffchainLabs/prysm/v7/beacon-chain/core/peerdas"
"github.com/OffchainLabs/prysm/v7/beacon-chain/db/filesystem"
"github.com/OffchainLabs/prysm/v7/beacon-chain/verification"
"github.com/OffchainLabs/prysm/v7/consensus-types/blocks"
"github.com/OffchainLabs/prysm/v7/consensus-types/primitives"
"github.com/ethereum/go-ethereum/p2p/enode"
errors "github.com/pkg/errors"
)
// LazilyPersistentStoreColumn is an implementation of AvailabilityStore to be used when batch syncing data columns.
// This implementation will hold any data columns passed to Persist until the IsDataAvailable is called for their
// block, at which time they will undergo full verification and be saved to the disk.
type LazilyPersistentStoreColumn struct {
store *filesystem.DataColumnStorage
cache *dataColumnCache
newDataColumnsVerifier verification.NewDataColumnsVerifier
custody *custodyRequirement
bisector Bisector
shouldRetain RetentionChecker
}
var _ AvailabilityChecker = &LazilyPersistentStoreColumn{}
// DataColumnsVerifier enables LazilyPersistentStoreColumn to manage the verification process
// going from RODataColumn->VerifiedRODataColumn, while avoiding the decision of which individual verifications
// to run and in what order. Since LazilyPersistentStoreColumn always tries to verify and save data columns only when
// they are all available, the interface takes a slice of data column sidecars.
type DataColumnsVerifier interface {
VerifiedRODataColumns(ctx context.Context, blk blocks.ROBlock, scs []blocks.RODataColumn) ([]blocks.VerifiedRODataColumn, error)
}
// NewLazilyPersistentStoreColumn creates a new LazilyPersistentStoreColumn.
// WARNING: The resulting LazilyPersistentStoreColumn is NOT thread-safe.
func NewLazilyPersistentStoreColumn(
store *filesystem.DataColumnStorage,
newDataColumnsVerifier verification.NewDataColumnsVerifier,
nodeID enode.ID,
cgc uint64,
bisector Bisector,
shouldRetain RetentionChecker,
) *LazilyPersistentStoreColumn {
return &LazilyPersistentStoreColumn{
store: store,
cache: newDataColumnCache(),
newDataColumnsVerifier: newDataColumnsVerifier,
custody: &custodyRequirement{nodeID: nodeID, cgc: cgc},
bisector: bisector,
shouldRetain: shouldRetain,
}
}
// PersistColumns adds columns to the working column cache. Columns stored in this cache will be persisted
// for at least as long as the node is running. Once IsDataAvailable succeeds, all columns referenced
// by the given block are guaranteed to be persisted for the remainder of the retention period.
func (s *LazilyPersistentStoreColumn) Persist(_ primitives.Slot, sidecars ...blocks.RODataColumn) error {
for _, sidecar := range sidecars {
if err := s.cache.stash(sidecar); err != nil {
return errors.Wrap(err, "stash DataColumnSidecar")
}
}
return nil
}
// IsDataAvailable returns nil if all the commitments in the given block are persisted to the db and have been verified.
// DataColumnsSidecars already in the db are assumed to have been previously verified against the block.
func (s *LazilyPersistentStoreColumn) IsDataAvailable(ctx context.Context, _ primitives.Slot, blks ...blocks.ROBlock) error {
toVerify := make([]blocks.RODataColumn, 0)
for _, block := range blks {
indices, err := s.required(block)
if err != nil {
return errors.Wrapf(err, "full commitments to check with block root `%#x`", block.Root())
}
if indices.Count() == 0 {
continue
}
key := keyFromBlock(block)
entry := s.cache.entry(key)
toVerify, err = entry.append(toVerify, IndicesNotStored(s.store.Summary(block.Root()), indices))
if err != nil {
return errors.Wrap(err, "entry filter")
}
}
if err := s.verifyAndSave(toVerify); err != nil {
log.Warn("Batch verification failed, bisecting columns by peer")
if err := s.bisectVerification(toVerify); err != nil {
return errors.Wrap(err, "bisect verification")
}
}
s.cache.cleanup(blks)
return nil
}
// required returns the set of column indices to check for a given block.
func (s *LazilyPersistentStoreColumn) required(block blocks.ROBlock) (peerdas.ColumnIndices, error) {
if !s.shouldRetain(block.Block().Slot()) {
return peerdas.NewColumnIndices(), nil
}
// If there are any commitments in the block, there are blobs,
// and if there are blobs, we need the columns bisecting those blobs.
commitments, err := block.Block().Body().BlobKzgCommitments()
if err != nil {
return nil, errors.Wrap(err, "blob KZG commitments")
}
// No DA check needed if the block has no blobs.
if len(commitments) == 0 {
return peerdas.NewColumnIndices(), nil
}
return s.custody.required()
}
// verifyAndSave calls Save on the column store if the columns pass verification.
func (s *LazilyPersistentStoreColumn) verifyAndSave(columns []blocks.RODataColumn) error {
if len(columns) == 0 {
return nil
}
verified, err := s.verifyColumns(columns)
if err != nil {
return errors.Wrap(err, "verify columns")
}
if err := s.store.Save(verified); err != nil {
return errors.Wrap(err, "save data column sidecars")
}
return nil
}
func (s *LazilyPersistentStoreColumn) verifyColumns(columns []blocks.RODataColumn) ([]blocks.VerifiedRODataColumn, error) {
if len(columns) == 0 {
return nil, nil
}
verifier := s.newDataColumnsVerifier(columns, verification.ByRangeRequestDataColumnSidecarRequirements)
if err := verifier.ValidFields(); err != nil {
return nil, errors.Wrap(err, "valid fields")
}
if err := verifier.SidecarInclusionProven(); err != nil {
return nil, errors.Wrap(err, "sidecar inclusion proven")
}
if err := verifier.SidecarKzgProofVerified(); err != nil {
return nil, errors.Wrap(err, "sidecar KZG proof verified")
}
return verifier.VerifiedRODataColumns()
}
// bisectVerification is used when verification of a batch of columns fails. Since the batch could
// span multiple blocks or have been fetched from multiple peers, this pattern enables code using the
// store to break the verification into smaller units and learn the results, in order to plan to retry
// retrieval of the unusable columns.
func (s *LazilyPersistentStoreColumn) bisectVerification(columns []blocks.RODataColumn) error {
if len(columns) == 0 {
return nil
}
if s.bisector == nil {
return errors.New("bisector not initialized")
}
iter, err := s.bisector.Bisect(columns)
if err != nil {
return errors.Wrap(err, "Bisector.Bisect")
}
// It's up to the bisector how to chunk up columns for verification,
// which could be by block, or by peer, or any other strategy.
// For the purposes of range syncing or backfill this will be by peer,
// so that the node can learn which peer is giving us bad data and downscore them.
for columns, err := iter.Next(); columns != nil; columns, err = iter.Next() {
if err != nil {
if !errors.Is(err, io.EOF) {
return errors.Wrap(err, "Bisector.Next")
}
break // io.EOF signals end of iteration
}
// We save the parts of the batch that have been verified successfully even though we don't know
// if all columns for the block will be available until the block is imported.
if err := s.verifyAndSave(s.columnsNotStored(columns)); err != nil {
iter.OnError(err)
continue
}
}
// This should give us a single error representing any unresolved errors seen via onError.
return iter.Error()
}
// columnsNotStored filters the list of ROColumnSidecars to only include those that are not found in the storage summary.
func (s *LazilyPersistentStoreColumn) columnsNotStored(sidecars []blocks.RODataColumn) []blocks.RODataColumn {
// We use this method to filter a set of sidecars that were previously seen to be unavailable on disk. So our base assumption
// is that they are still available and we don't need to copy the list. Instead we make a slice of any indices that are unexpectedly
// stored and only when we find that the storage view has changed do we need to create a new slice.
stored := make(map[int]struct{}, 0)
lastRoot := [32]byte{}
var sum filesystem.DataColumnStorageSummary
for i, sc := range sidecars {
if sc.BlockRoot() != lastRoot {
sum = s.store.Summary(sc.BlockRoot())
lastRoot = sc.BlockRoot()
}
if sum.HasIndex(sc.Index) {
stored[i] = struct{}{}
}
}
// If the view on storage hasn't changed, return the original list.
if len(stored) == 0 {
return sidecars
}
shift := 0
for i := range sidecars {
if _, ok := stored[i]; ok {
// If the index is stored, skip and overwrite it.
// Track how many spaces down to shift unseen sidecars (to overwrite the previously shifted or seen).
shift++
continue
}
if shift > 0 {
// If the index is not stored and we have seen stored indices,
// we need to shift the current index down.
sidecars[i-shift] = sidecars[i]
}
}
return sidecars[:len(sidecars)-shift]
}
type custodyRequirement struct {
nodeID enode.ID
cgc uint64 // custody group count
indices peerdas.ColumnIndices
}
func (c *custodyRequirement) required() (peerdas.ColumnIndices, error) {
peerInfo, _, err := peerdas.Info(c.nodeID, c.cgc)
if err != nil {
return peerdas.NewColumnIndices(), errors.Wrap(err, "peer info")
}
return peerdas.NewColumnIndicesFromMap(peerInfo.CustodyColumns), nil
}