mirror of
https://github.com/reddit-archive/reddit.git
synced 2026-01-13 00:47:56 -05:00
Endpoint for retrieving subreddits to make new users aware of without actually subscribing them while doing the onboarding process. The list of featured subreddits will be managed separately from the default ones. For testing purposes, we add a subreddit to show up via the inject_test_data script.
361 lines
12 KiB
Python
361 lines
12 KiB
Python
# The contents of this file are subject to the Common Public Attribution
|
|
# License Version 1.0. (the "License"); you may not use this file except in
|
|
# compliance with the License. You may obtain a copy of the License at
|
|
# http://code.reddit.com/LICENSE. The License is based on the Mozilla Public
|
|
# License Version 1.1, but Sections 14 and 15 have been added to cover use of
|
|
# software over a computer network and provide for limited attribution for the
|
|
# Original Developer. In addition, Exhibit A has been modified to be consistent
|
|
# with Exhibit B.
|
|
#
|
|
# Software distributed under the License is distributed on an "AS IS" basis,
|
|
# WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for
|
|
# the specific language governing rights and limitations under the License.
|
|
#
|
|
# The Original Code is reddit.
|
|
#
|
|
# The Original Developer is the Initial Developer. The Initial Developer of
|
|
# the Original Code is reddit Inc.
|
|
#
|
|
# All portions of the code written by reddit are Copyright (c) 2006-2015 reddit
|
|
# Inc. All Rights Reserved.
|
|
###############################################################################
|
|
|
|
from __future__ import division
|
|
|
|
import collections
|
|
import HTMLParser
|
|
import itertools
|
|
import random
|
|
import string
|
|
import time
|
|
|
|
import requests
|
|
|
|
from pylons import app_globals as g
|
|
|
|
from r2.lib.db import queries
|
|
from r2.lib import amqp
|
|
from r2.lib.utils import weighted_lottery, get_requests_resp_json
|
|
from r2.lib.voting import cast_vote
|
|
from r2.models import (
|
|
Account,
|
|
Comment,
|
|
Link,
|
|
LocalizedDefaultSubreddits,
|
|
LocalizedFeaturedSubreddits,
|
|
NotFound,
|
|
register,
|
|
Subreddit,
|
|
Vote,
|
|
)
|
|
|
|
|
|
unescape_htmlentities = HTMLParser.HTMLParser().unescape
|
|
|
|
|
|
class TextGenerator(object):
|
|
"""A Markov Chain based text mimicker."""
|
|
|
|
def __init__(self, order=8):
|
|
self.order = order
|
|
self.starts = collections.Counter()
|
|
self.start_lengths = collections.defaultdict(collections.Counter)
|
|
self.models = [
|
|
collections.defaultdict(collections.Counter)
|
|
for i in xrange(self.order)]
|
|
|
|
@staticmethod
|
|
def _in_groups(input_iterable, n):
|
|
iterables = itertools.tee(input_iterable, n)
|
|
for offset, iterable in enumerate(iterables):
|
|
for _ in xrange(offset):
|
|
next(iterable, None)
|
|
return itertools.izip(*iterables)
|
|
|
|
def add_sample(self, sample):
|
|
"""Add a sample to the model of text for this generator."""
|
|
|
|
if len(sample) <= self.order:
|
|
return
|
|
|
|
start = sample[:self.order]
|
|
self.starts[start] += 1
|
|
self.start_lengths[start][len(sample)] += 1
|
|
for order, model in enumerate(self.models, 1):
|
|
for chars in self._in_groups(sample, order+1):
|
|
prefix = "".join(chars[:-1])
|
|
next_char = chars[-1]
|
|
model[prefix][next_char] += 1
|
|
|
|
def generate(self):
|
|
"""Generate a string similar to samples previously fed in."""
|
|
|
|
start = weighted_lottery(self.starts)
|
|
desired_length = weighted_lottery(self.start_lengths[start])
|
|
desired_length = max(desired_length, self.order)
|
|
|
|
generated = []
|
|
generated.extend(start)
|
|
while len(generated) < desired_length:
|
|
# try each model, from highest order down, til we find
|
|
# something
|
|
for order, model in reversed(list(enumerate(self.models, 1))):
|
|
current_prefix = "".join(generated[-order:])
|
|
frequencies = model[current_prefix]
|
|
if frequencies:
|
|
generated.append(weighted_lottery(frequencies))
|
|
break
|
|
else:
|
|
generated.append(random.choice(string.lowercase))
|
|
|
|
return "".join(generated)
|
|
|
|
|
|
def fetch_listing(path, limit=1000, batch_size=100):
|
|
"""Fetch a reddit listing from reddit.com."""
|
|
|
|
session = requests.Session()
|
|
session.headers.update({
|
|
"User-Agent": "reddit-test-data-generator/1.0",
|
|
})
|
|
|
|
base_url = "https://api.reddit.com" + path
|
|
|
|
after = None
|
|
count = 0
|
|
while count < limit:
|
|
params = {"limit": batch_size, "count": count}
|
|
if after:
|
|
params["after"] = after
|
|
|
|
print "> {}-{}".format(count, count+batch_size)
|
|
response = session.get(base_url, params=params)
|
|
response.raise_for_status()
|
|
|
|
listing = get_requests_resp_json(response)["data"]
|
|
for child in listing["children"]:
|
|
yield child["data"]
|
|
count += 1
|
|
|
|
after = listing["after"]
|
|
if not after:
|
|
break
|
|
|
|
# obey reddit.com's ratelimits
|
|
# see: https://github.com/reddit/reddit/wiki/API#rules
|
|
time.sleep(2)
|
|
|
|
|
|
class Modeler(object):
|
|
def __init__(self):
|
|
self.usernames = TextGenerator(order=2)
|
|
|
|
def model_subreddit(self, subreddit_name):
|
|
"""Return a model of links and comments in a given subreddit."""
|
|
|
|
subreddit_path = "/r/{}".format(subreddit_name)
|
|
print ">>>", subreddit_path
|
|
|
|
print ">> Links"
|
|
titles = TextGenerator(order=5)
|
|
selfposts = TextGenerator(order=8)
|
|
link_count = self_count = 0
|
|
urls = set()
|
|
for link in fetch_listing(subreddit_path, limit=500):
|
|
self.usernames.add_sample(link["author"])
|
|
titles.add_sample(unescape_htmlentities(link["title"]))
|
|
if link["is_self"]:
|
|
self_count += 1
|
|
selfposts.add_sample(unescape_htmlentities(link["selftext"]))
|
|
else:
|
|
urls.add(link["url"])
|
|
link_count += 1
|
|
self_frequency = self_count / link_count
|
|
|
|
print ">> Comments"
|
|
comments = TextGenerator(order=8)
|
|
for comment in fetch_listing(subreddit_path + "/comments"):
|
|
self.usernames.add_sample(comment["author"])
|
|
comments.add_sample(unescape_htmlentities(comment["body"]))
|
|
|
|
return SubredditModel(
|
|
subreddit_name, titles, selfposts, urls, comments, self_frequency)
|
|
|
|
def generate_username(self):
|
|
"""Generate and return a username like those seen on reddit.com."""
|
|
return self.usernames.generate()
|
|
|
|
|
|
class SubredditModel(object):
|
|
"""A snapshot of a subreddit's links and comments."""
|
|
|
|
def __init__(self, name, titles, selfposts, urls, comments, self_frequency):
|
|
self.name = name
|
|
self.titles = titles
|
|
self.selfposts = selfposts
|
|
self.urls = list(urls)
|
|
self.comments = comments
|
|
self.selfpost_frequency = self_frequency
|
|
|
|
def generate_link_title(self):
|
|
"""Generate and return a title like those seen in the subreddit."""
|
|
return self.titles.generate()
|
|
|
|
def generate_link_url(self):
|
|
"""Generate and return a URL from one seen in the subreddit.
|
|
|
|
The URL returned may be "self" indicating a self post. This should
|
|
happen with the same frequency it is seen in the modeled subreddit.
|
|
|
|
"""
|
|
if random.random() < self.selfpost_frequency:
|
|
return "self"
|
|
else:
|
|
return random.choice(self.urls)
|
|
|
|
def generate_selfpost_body(self):
|
|
"""Generate and return a self-post body like seen in the subreddit."""
|
|
return self.selfposts.generate()
|
|
|
|
def generate_comment_body(self):
|
|
"""Generate and return a comment body like seen in the subreddit."""
|
|
return self.comments.generate()
|
|
|
|
|
|
def fuzz_number(number):
|
|
return int(random.betavariate(2, 8) * 5 * number)
|
|
|
|
|
|
def ensure_account(name):
|
|
"""Look up or register an account and return it."""
|
|
try:
|
|
account = Account._by_name(name)
|
|
print ">> found /u/{}".format(name)
|
|
return account
|
|
except NotFound:
|
|
print ">> registering /u/{}".format(name)
|
|
return register(name, "password", "127.0.0.1")
|
|
|
|
|
|
def ensure_subreddit(name, author):
|
|
"""Look up or create a subreddit and return it."""
|
|
try:
|
|
sr = Subreddit._by_name(name)
|
|
print ">> found /r/{}".format(name)
|
|
return sr
|
|
except NotFound:
|
|
print ">> creating /r/{}".format(name)
|
|
sr = Subreddit._new(
|
|
name=name,
|
|
title="/r/{}".format(name),
|
|
author_id=author._id,
|
|
lang="en",
|
|
ip="127.0.0.1",
|
|
)
|
|
sr._commit()
|
|
return sr
|
|
|
|
|
|
def inject_test_data(num_links=25, num_comments=25, num_votes=5):
|
|
"""Flood your reddit install with test data based on reddit.com."""
|
|
|
|
print ">>>> Ensuring configured objects exist"
|
|
system_user = ensure_account(g.system_user)
|
|
ensure_account(g.automoderator_account)
|
|
ensure_subreddit(g.default_sr, system_user)
|
|
ensure_subreddit(g.takedown_sr, system_user)
|
|
ensure_subreddit(g.beta_sr, system_user)
|
|
ensure_subreddit(g.promo_sr_name, system_user)
|
|
|
|
print
|
|
print
|
|
|
|
print ">>>> Fetching real data from reddit.com"
|
|
modeler = Modeler()
|
|
subreddits = [
|
|
modeler.model_subreddit("pics"),
|
|
modeler.model_subreddit("videos"),
|
|
modeler.model_subreddit("askhistorians"),
|
|
]
|
|
extra_settings = {
|
|
"pics": {
|
|
"show_media": True,
|
|
},
|
|
"videos": {
|
|
"show_media": True,
|
|
},
|
|
}
|
|
|
|
print
|
|
print
|
|
|
|
print ">>>> Generating test data"
|
|
print ">>> Accounts"
|
|
account_query = Account._query(sort="_date", limit=500, data=True)
|
|
accounts = [a for a in account_query if a.name != g.system_user]
|
|
accounts.extend(
|
|
ensure_account(modeler.generate_username())
|
|
for i in xrange(50 - len(accounts)))
|
|
|
|
print ">>> Content"
|
|
things = []
|
|
for sr_model in subreddits:
|
|
sr_author = random.choice(accounts)
|
|
sr = ensure_subreddit(sr_model.name, sr_author)
|
|
|
|
# make the system user subscribed for easier testing
|
|
if sr.add_subscriber(system_user):
|
|
sr._incr("_ups", 1)
|
|
|
|
# apply any custom config we need for this sr
|
|
for setting, value in extra_settings.get(sr.name, {}).iteritems():
|
|
setattr(sr, setting, value)
|
|
sr._commit()
|
|
|
|
for i in xrange(num_links):
|
|
link_author = random.choice(accounts)
|
|
url = sr_model.generate_link_url()
|
|
is_self = (url == "self")
|
|
content = sr_model.generate_selfpost_body() if is_self else url
|
|
link = Link._submit(
|
|
is_self=is_self,
|
|
title=sr_model.generate_link_title(),
|
|
content=content,
|
|
author=link_author,
|
|
sr=sr,
|
|
ip="127.0.0.1",
|
|
)
|
|
queries.new_link(link)
|
|
things.append(link)
|
|
|
|
comments = [None]
|
|
for i in xrange(fuzz_number(num_comments)):
|
|
comment_author = random.choice(accounts)
|
|
comment, inbox_rel = Comment._new(
|
|
comment_author,
|
|
link,
|
|
parent=random.choice(comments),
|
|
body=sr_model.generate_comment_body(),
|
|
ip="127.0.0.1",
|
|
)
|
|
queries.new_comment(comment, inbox_rel)
|
|
comments.append(comment)
|
|
things.append(comment)
|
|
|
|
for thing in things:
|
|
for i in xrange(fuzz_number(num_votes)):
|
|
direction = random.choice([
|
|
Vote.DIRECTIONS.up,
|
|
Vote.DIRECTIONS.unvote,
|
|
Vote.DIRECTIONS.down,
|
|
])
|
|
voter = random.choice(accounts)
|
|
|
|
cast_vote(voter, thing, direction)
|
|
|
|
amqp.worker.join()
|
|
|
|
srs = [Subreddit._by_name(n) for n in ("pics", "videos", "askhistorians")]
|
|
LocalizedDefaultSubreddits.set_global_srs(srs)
|
|
LocalizedFeaturedSubreddits.set_global_srs([Subreddit._by_name('pics')])
|