Files
reth/crates/net/ecies/src/algorithm.rs
2024-03-29 21:43:52 +00:00

956 lines
37 KiB
Rust

#![allow(missing_docs)]
use crate::{
error::ECIESErrorImpl,
mac::{HeaderBytes, MAC},
util::{hmac_sha256, sha256},
ECIESError,
};
use aes::{cipher::StreamCipher, Aes128, Aes256};
use alloy_rlp::{Encodable, Rlp, RlpEncodable, RlpMaxEncodedLen};
use byteorder::{BigEndian, ByteOrder, ReadBytesExt};
use ctr::Ctr64BE;
use digest::{crypto_common::KeyIvInit, Digest};
use educe::Educe;
use rand::{thread_rng, Rng};
use reth_primitives::{
bytes::{BufMut, Bytes, BytesMut},
id2pk, pk2id, B128, B256, B512 as PeerId,
};
use secp256k1::{
ecdsa::{RecoverableSignature, RecoveryId},
PublicKey, SecretKey, SECP256K1,
};
use sha2::Sha256;
use sha3::Keccak256;
const PROTOCOL_VERSION: usize = 4;
/// Computes the shared secret with ECDH and strips the y coordinate after computing the shared
/// secret.
///
/// This uses the given remote public key and local (ephemeral) secret key to [compute a shared
/// secp256k1 point](secp256k1::ecdh::shared_secret_point) and slices off the y coordinate from the
/// returned pair, returning only the bytes of the x coordinate as a [`B256`].
fn ecdh_x(public_key: &PublicKey, secret_key: &SecretKey) -> B256 {
B256::from_slice(&secp256k1::ecdh::shared_secret_point(public_key, secret_key)[..32])
}
/// This is the NIST SP 800-56A Concatenation Key Derivation Function (KDF) using SHA-256.
///
/// Internally this uses [`concat_kdf::derive_key_into`] to derive a key into the given `dest`
/// slice.
///
/// # Panics
/// * If the `dest` is empty
/// * If the `dest` len is greater than or equal to the hash output len * the max counter value. In
/// this case, the hash output len is 32 bytes, and the max counter value is 2^32 - 1. So the dest
/// cannot have a len greater than 32 * 2^32 - 1.
fn kdf(secret: B256, s1: &[u8], dest: &mut [u8]) {
concat_kdf::derive_key_into::<Sha256>(secret.as_slice(), s1, dest).unwrap();
}
#[derive(Educe)]
#[educe(Debug)]
pub struct ECIES {
#[educe(Debug(ignore))]
secret_key: SecretKey,
public_key: PublicKey,
remote_public_key: Option<PublicKey>,
pub(crate) remote_id: Option<PeerId>,
#[educe(Debug(ignore))]
ephemeral_secret_key: SecretKey,
ephemeral_public_key: PublicKey,
ephemeral_shared_secret: Option<B256>,
remote_ephemeral_public_key: Option<PublicKey>,
nonce: B256,
remote_nonce: Option<B256>,
#[educe(Debug(ignore))]
ingress_aes: Option<Ctr64BE<Aes256>>,
#[educe(Debug(ignore))]
egress_aes: Option<Ctr64BE<Aes256>>,
ingress_mac: Option<MAC>,
egress_mac: Option<MAC>,
init_msg: Option<Bytes>,
remote_init_msg: Option<Bytes>,
body_size: Option<usize>,
}
fn split_at_mut<T>(arr: &mut [T], idx: usize) -> Result<(&mut [T], &mut [T]), ECIESError> {
if idx > arr.len() {
return Err(ECIESErrorImpl::OutOfBounds { idx, len: arr.len() }.into())
}
Ok(arr.split_at_mut(idx))
}
/// A parsed RLPx encrypted message
///
/// From the devp2p spec, this should help perform the following operations:
///
/// For Bob to decrypt the message `R || iv || c || d`, he derives the shared secret `S = Px` where
/// `(Px, Py) = kB * R` as well as the encryption and authentication keys `kE || kM = KDF(S, 32)`.
///
/// Bob verifies the authenticity of the message by checking whether `d == MAC(sha256(kM), iv ||
/// c)` then obtains the plaintext as `m = AES(kE, iv || c)`.
#[derive(Debug)]
pub struct EncryptedMessage<'a> {
/// The auth data, used when checking the `tag` with HMAC-SHA256.
///
/// This is not mentioned in the RLPx spec, but included in implementations.
///
/// See source comments of [Self::check_integrity] for more information.
auth_data: [u8; 2],
/// The remote secp256k1 public key
public_key: PublicKey,
/// The IV, for use in AES during decryption, in the tag check
iv: B128,
/// The encrypted data
encrypted_data: &'a mut [u8],
/// The message tag
tag: B256,
}
impl<'a> EncryptedMessage<'a> {
/// Parse the given `data` into an [EncryptedMessage].
///
/// If the data is not long enough to contain the expected fields, this returns an error.
pub fn parse(data: &mut [u8]) -> Result<EncryptedMessage<'_>, ECIESError> {
// Auth data is 2 bytes, public key is 65 bytes
if data.len() < 65 + 2 {
return Err(ECIESErrorImpl::EncryptedDataTooSmall.into())
}
let (auth_data, encrypted) = data.split_at_mut(2);
// convert the auth data to a fixed size array
//
// NOTE: this will not panic because we've already checked that the data is long enough
let auth_data = auth_data.try_into().unwrap();
let (pubkey_bytes, encrypted) = encrypted.split_at_mut(65);
let public_key = PublicKey::from_slice(pubkey_bytes)?;
// return an error if the encrypted len is currently less than 32
let tag_index =
encrypted.len().checked_sub(32).ok_or(ECIESErrorImpl::EncryptedDataTooSmall)?;
// NOTE: we've already checked that the encrypted data is long enough to contain the
// encrypted data and tag
let (data_iv, tag_bytes) = encrypted.split_at_mut(tag_index);
// NOTE: this will not panic because we are splitting at length minus 32 bytes, which
// causes tag_bytes to be 32 bytes long
let tag = B256::from_slice(tag_bytes);
// now we can check if the encrypted data is long enough to contain the IV
if data_iv.len() < 16 {
return Err(ECIESErrorImpl::EncryptedDataTooSmall.into())
}
let (iv, encrypted_data) = data_iv.split_at_mut(16);
// NOTE: this will not panic because we are splitting at 16 bytes
let iv = B128::from_slice(iv);
Ok(EncryptedMessage { auth_data, public_key, iv, encrypted_data, tag })
}
/// Use the given secret and this encrypted message to derive the shared secret, and use the
/// shared secret to derive the mac and encryption keys.
pub fn derive_keys(&self, secret_key: &SecretKey) -> RLPxSymmetricKeys {
// perform ECDH to get the shared secret, using the remote public key from the message and
// the given secret key
let x = ecdh_x(&self.public_key, secret_key);
let mut key = [0u8; 32];
// The RLPx spec describes the key derivation process as:
//
// kE || kM = KDF(S, 32)
//
// where kE is the encryption key, and kM is used to determine the MAC key (see below)
//
// NOTE: The RLPx spec does not define an `OtherInfo` parameter, and this is unused in
// other implementations, so we use an empty slice.
kdf(x, &[], &mut key);
let enc_key = B128::from_slice(&key[..16]);
// The MAC tag check operation described is:
//
// d == MAC(sha256(kM), iv || c)
//
// where kM is the result of the above KDF, iv is the IV, and c is the encrypted data.
// Because the hash of kM is ultimately used as the mac key, we perform that hashing here.
let mac_key = sha256(&key[16..32]);
RLPxSymmetricKeys { enc_key, mac_key }
}
/// Use the given ECIES keys to check the message integrity using the contained tag.
pub fn check_integrity(&self, keys: &RLPxSymmetricKeys) -> Result<(), ECIESError> {
// The MAC tag check operation described is:
//
// d == MAC(sha256(kM), iv || c)
//
// NOTE: The RLPx spec does not show here that the `auth_data` is required for checking the
// tag.
//
// Geth refers to SEC 1's definition of ECIES:
//
// Encrypt encrypts a message using ECIES as specified in SEC 1, section 5.1.
//
// s1 and s2 contain shared information that is not part of the resulting
// ciphertext. s1 is fed into key derivation, s2 is fed into the MAC. If the
// shared information parameters aren't being used, they should be nil.
//
// ```
// prefix := make([]byte, 2)
// binary.BigEndian.PutUint16(prefix, uint16(len(h.wbuf.data)+eciesOverhead))
//
// enc, err := ecies.Encrypt(rand.Reader, h.remote, h.wbuf.data, nil, prefix)
// ```
let check_tag = hmac_sha256(
keys.mac_key.as_ref(),
&[self.iv.as_slice(), self.encrypted_data],
&self.auth_data,
);
if check_tag != self.tag {
return Err(ECIESErrorImpl::TagCheckDecryptFailed.into())
}
Ok(())
}
/// Use the given ECIES keys to decrypt the contained encrypted data, consuming the message and
/// returning the decrypted data.
pub fn decrypt(self, keys: &RLPxSymmetricKeys) -> &'a mut [u8] {
let Self { iv, encrypted_data, .. } = self;
// rename for clarity once it's decrypted
let decrypted_data = encrypted_data;
let mut decryptor = Ctr64BE::<Aes128>::new((&keys.enc_key.0).into(), (&*iv).into());
decryptor.apply_keystream(decrypted_data);
decrypted_data
}
/// Use the given ECIES keys to check the integrity of the message, returning an error if the
/// tag check fails, and then decrypt the message, returning the decrypted data.
pub fn check_and_decrypt(self, keys: RLPxSymmetricKeys) -> Result<&'a mut [u8], ECIESError> {
self.check_integrity(&keys)?;
Ok(self.decrypt(&keys))
}
}
/// The symmetric keys derived from an ECIES message.
#[derive(Debug)]
pub struct RLPxSymmetricKeys {
/// The key used for decryption, specifically with AES-128 in CTR mode, using a 64-bit big
/// endian counter.
pub enc_key: B128,
/// The key used for verifying message integrity, specifically with the NIST SP 800-56A Concat
/// KDF.
pub mac_key: B256,
}
impl ECIES {
/// Create a new client with the given static secret key, remote peer id, nonce, and ephemeral
/// secret key.
fn new_static_client(
secret_key: SecretKey,
remote_id: PeerId,
nonce: B256,
ephemeral_secret_key: SecretKey,
) -> Result<Self, ECIESError> {
let public_key = PublicKey::from_secret_key(SECP256K1, &secret_key);
let remote_public_key = id2pk(remote_id)?;
let ephemeral_public_key = PublicKey::from_secret_key(SECP256K1, &ephemeral_secret_key);
Ok(Self {
secret_key,
public_key,
ephemeral_secret_key,
ephemeral_public_key,
nonce,
remote_public_key: Some(remote_public_key),
remote_ephemeral_public_key: None,
remote_nonce: None,
ephemeral_shared_secret: None,
init_msg: None,
remote_init_msg: None,
remote_id: Some(remote_id),
body_size: None,
egress_aes: None,
ingress_aes: None,
egress_mac: None,
ingress_mac: None,
})
}
/// Create a new ECIES client with the given static secret key and remote peer ID.
pub fn new_client(secret_key: SecretKey, remote_id: PeerId) -> Result<Self, ECIESError> {
let mut rng = thread_rng();
let nonce = rng.gen();
let ephemeral_secret_key = SecretKey::new(&mut rng);
Self::new_static_client(secret_key, remote_id, nonce, ephemeral_secret_key)
}
/// Create a new server with the given static secret key, remote peer id, and ephemeral secret
/// key.
pub fn new_static_server(
secret_key: SecretKey,
nonce: B256,
ephemeral_secret_key: SecretKey,
) -> Result<Self, ECIESError> {
let public_key = PublicKey::from_secret_key(SECP256K1, &secret_key);
let ephemeral_public_key = PublicKey::from_secret_key(SECP256K1, &ephemeral_secret_key);
Ok(Self {
secret_key,
public_key,
ephemeral_secret_key,
ephemeral_public_key,
nonce,
remote_public_key: None,
remote_ephemeral_public_key: None,
remote_nonce: None,
ephemeral_shared_secret: None,
init_msg: None,
remote_init_msg: None,
remote_id: None,
body_size: None,
egress_aes: None,
ingress_aes: None,
egress_mac: None,
ingress_mac: None,
})
}
/// Create a new ECIES server with the given static secret key.
pub fn new_server(secret_key: SecretKey) -> Result<Self, ECIESError> {
let mut rng = thread_rng();
let nonce = rng.gen();
let ephemeral_secret_key = SecretKey::new(&mut rng);
Self::new_static_server(secret_key, nonce, ephemeral_secret_key)
}
/// Return the contained remote peer ID.
pub fn remote_id(&self) -> PeerId {
self.remote_id.unwrap()
}
fn encrypt_message(&self, data: &[u8], out: &mut BytesMut) {
let mut rng = thread_rng();
out.reserve(secp256k1::constants::UNCOMPRESSED_PUBLIC_KEY_SIZE + 16 + data.len() + 32);
let secret_key = SecretKey::new(&mut rng);
out.extend_from_slice(
&PublicKey::from_secret_key(SECP256K1, &secret_key).serialize_uncompressed(),
);
let x = ecdh_x(&self.remote_public_key.unwrap(), &secret_key);
let mut key = [0u8; 32];
kdf(x, &[], &mut key);
let enc_key = B128::from_slice(&key[..16]);
let mac_key = sha256(&key[16..32]);
let iv: B128 = rng.gen();
let mut encryptor = Ctr64BE::<Aes128>::new((&enc_key.0).into(), (&iv.0).into());
let mut encrypted = data.to_vec();
encryptor.apply_keystream(&mut encrypted);
let total_size: u16 = u16::try_from(65 + 16 + data.len() + 32).unwrap();
let tag =
hmac_sha256(mac_key.as_ref(), &[iv.as_slice(), &encrypted], &total_size.to_be_bytes());
out.extend_from_slice(iv.as_slice());
out.extend_from_slice(&encrypted);
out.extend_from_slice(tag.as_ref());
}
fn decrypt_message<'a>(&self, data: &'a mut [u8]) -> Result<&'a mut [u8], ECIESError> {
// parse the encrypted message from bytes
let encrypted_message = EncryptedMessage::parse(data)?;
// derive keys from the secret key and the encrypted message
let keys = encrypted_message.derive_keys(&self.secret_key);
// check message integrity and decrypt the message
encrypted_message.check_and_decrypt(keys)
}
fn create_auth_unencrypted(&self) -> BytesMut {
let x = ecdh_x(&self.remote_public_key.unwrap(), &self.secret_key);
let msg = x ^ self.nonce;
let (rec_id, sig) = SECP256K1
.sign_ecdsa_recoverable(
&secp256k1::Message::from_slice(msg.as_slice()).unwrap(),
&self.ephemeral_secret_key,
)
.serialize_compact();
let mut sig_bytes = [0u8; 65];
sig_bytes[..64].copy_from_slice(&sig);
sig_bytes[64] = rec_id.to_i32() as u8;
let id = pk2id(&self.public_key);
#[derive(RlpEncodable)]
struct S<'a> {
sig_bytes: &'a [u8; 65],
id: &'a PeerId,
nonce: &'a B256,
protocol_version: u8,
}
let mut out = BytesMut::new();
S {
sig_bytes: &sig_bytes,
id: &id,
nonce: &self.nonce,
protocol_version: PROTOCOL_VERSION as u8,
}
.encode(&mut out);
out.resize(out.len() + thread_rng().gen_range(100..=300), 0);
out
}
#[cfg(test)]
fn create_auth(&mut self) -> BytesMut {
let mut buf = BytesMut::new();
self.write_auth(&mut buf);
buf
}
/// Write an auth message to the given buffer.
pub fn write_auth(&mut self, buf: &mut BytesMut) {
let unencrypted = self.create_auth_unencrypted();
let mut out = buf.split_off(buf.len());
out.put_u16(0);
let mut encrypted = out.split_off(out.len());
self.encrypt_message(&unencrypted, &mut encrypted);
let len_bytes = u16::try_from(encrypted.len()).unwrap().to_be_bytes();
out[..len_bytes.len()].copy_from_slice(&len_bytes);
out.unsplit(encrypted);
self.init_msg = Some(Bytes::copy_from_slice(&out));
buf.unsplit(out);
}
fn parse_auth_unencrypted(&mut self, data: &[u8]) -> Result<(), ECIESError> {
let mut data = Rlp::new(data)?;
let sigdata = data.get_next::<[u8; 65]>()?.ok_or(ECIESErrorImpl::InvalidAuthData)?;
let signature = RecoverableSignature::from_compact(
&sigdata[..64],
RecoveryId::from_i32(sigdata[64] as i32)?,
)?;
let remote_id = data.get_next()?.ok_or(ECIESErrorImpl::InvalidAuthData)?;
self.remote_id = Some(remote_id);
self.remote_public_key = Some(id2pk(remote_id)?);
self.remote_nonce = Some(data.get_next()?.ok_or(ECIESErrorImpl::InvalidAuthData)?);
let x = ecdh_x(&self.remote_public_key.unwrap(), &self.secret_key);
self.remote_ephemeral_public_key = Some(SECP256K1.recover_ecdsa(
&secp256k1::Message::from_slice((x ^ self.remote_nonce.unwrap()).as_ref()).unwrap(),
&signature,
)?);
self.ephemeral_shared_secret =
Some(ecdh_x(&self.remote_ephemeral_public_key.unwrap(), &self.ephemeral_secret_key));
Ok(())
}
/// Read and verify an auth message from the input data.
#[tracing::instrument(skip_all)]
pub fn read_auth(&mut self, data: &mut [u8]) -> Result<(), ECIESError> {
self.remote_init_msg = Some(Bytes::copy_from_slice(data));
let unencrypted = self.decrypt_message(data)?;
self.parse_auth_unencrypted(unencrypted)
}
/// Create an `ack` message using the internal nonce, local ephemeral public key, and RLPx
/// ECIES protocol version.
fn create_ack_unencrypted(&self) -> impl AsRef<[u8]> {
#[derive(RlpEncodable, RlpMaxEncodedLen)]
struct S {
id: PeerId,
nonce: B256,
protocol_version: u8,
}
alloy_rlp::encode_fixed_size(&S {
id: pk2id(&self.ephemeral_public_key),
nonce: self.nonce,
protocol_version: PROTOCOL_VERSION as u8,
})
}
#[cfg(test)]
pub fn create_ack(&mut self) -> BytesMut {
let mut buf = BytesMut::new();
self.write_ack(&mut buf);
buf
}
/// Write an `ack` message to the given buffer.
pub fn write_ack(&mut self, out: &mut BytesMut) {
let unencrypted = self.create_ack_unencrypted();
let mut buf = out.split_off(out.len());
// reserve space for length
buf.put_u16(0);
// encrypt and append
let mut encrypted = buf.split_off(buf.len());
self.encrypt_message(unencrypted.as_ref(), &mut encrypted);
let len_bytes = u16::try_from(encrypted.len()).unwrap().to_be_bytes();
buf.unsplit(encrypted);
// write length
buf[..len_bytes.len()].copy_from_slice(&len_bytes[..]);
self.init_msg = Some(buf.clone().freeze());
out.unsplit(buf);
self.setup_frame(true);
}
/// Parse the incoming `ack` message from the given `data` bytes, which are assumed to be
/// unencrypted. This parses the remote ephemeral pubkey and nonce from the message, and uses
/// ECDH to compute the shared secret. The shared secret is the x coordinate of the point
/// returned by ECDH.
///
/// This sets the `remote_ephemeral_public_key` and `remote_nonce`, and
/// `ephemeral_shared_secret` fields in the ECIES state.
fn parse_ack_unencrypted(&mut self, data: &[u8]) -> Result<(), ECIESError> {
let mut data = Rlp::new(data)?;
self.remote_ephemeral_public_key =
Some(id2pk(data.get_next()?.ok_or(ECIESErrorImpl::InvalidAckData)?)?);
self.remote_nonce = Some(data.get_next()?.ok_or(ECIESErrorImpl::InvalidAckData)?);
self.ephemeral_shared_secret =
Some(ecdh_x(&self.remote_ephemeral_public_key.unwrap(), &self.ephemeral_secret_key));
Ok(())
}
/// Read and verify an ack message from the input data.
#[tracing::instrument(skip_all)]
pub fn read_ack(&mut self, data: &mut [u8]) -> Result<(), ECIESError> {
self.remote_init_msg = Some(Bytes::copy_from_slice(data));
let unencrypted = self.decrypt_message(data)?;
self.parse_ack_unencrypted(unencrypted)?;
self.setup_frame(false);
Ok(())
}
fn setup_frame(&mut self, incoming: bool) {
let mut hasher = Keccak256::new();
for el in &if incoming {
[self.nonce, self.remote_nonce.unwrap()]
} else {
[self.remote_nonce.unwrap(), self.nonce]
} {
hasher.update(el);
}
let h_nonce = B256::from(hasher.finalize().as_ref());
let iv = B128::default();
let shared_secret: B256 = {
let mut hasher = Keccak256::new();
hasher.update(self.ephemeral_shared_secret.unwrap().0.as_ref());
hasher.update(h_nonce.0.as_ref());
B256::from(hasher.finalize().as_ref())
};
let aes_secret: B256 = {
let mut hasher = Keccak256::new();
hasher.update(self.ephemeral_shared_secret.unwrap().0.as_ref());
hasher.update(shared_secret.0.as_ref());
B256::from(hasher.finalize().as_ref())
};
self.ingress_aes = Some(Ctr64BE::<Aes256>::new((&aes_secret.0).into(), (&iv.0).into()));
self.egress_aes = Some(Ctr64BE::<Aes256>::new((&aes_secret.0).into(), (&iv.0).into()));
let mac_secret: B256 = {
let mut hasher = Keccak256::new();
hasher.update(self.ephemeral_shared_secret.unwrap().0.as_ref());
hasher.update(aes_secret.0.as_ref());
B256::from(hasher.finalize().as_ref())
};
self.ingress_mac = Some(MAC::new(mac_secret));
self.ingress_mac.as_mut().unwrap().update((mac_secret ^ self.nonce).as_ref());
self.ingress_mac.as_mut().unwrap().update(self.remote_init_msg.as_ref().unwrap());
self.egress_mac = Some(MAC::new(mac_secret));
self.egress_mac
.as_mut()
.unwrap()
.update((mac_secret ^ self.remote_nonce.unwrap()).as_ref());
self.egress_mac.as_mut().unwrap().update(self.init_msg.as_ref().unwrap());
}
#[cfg(test)]
fn create_header(&mut self, size: usize) -> BytesMut {
let mut out = BytesMut::new();
self.write_header(&mut out, size);
out
}
pub fn write_header(&mut self, out: &mut BytesMut, size: usize) {
let mut buf = [0u8; 8];
BigEndian::write_uint(&mut buf, size as u64, 3);
let mut header = [0u8; 16];
header[..3].copy_from_slice(&buf[..3]);
header[3..6].copy_from_slice(&[194, 128, 128]);
let mut header = HeaderBytes::from(header);
self.egress_aes.as_mut().unwrap().apply_keystream(&mut header);
self.egress_mac.as_mut().unwrap().update_header(&header);
let tag = self.egress_mac.as_mut().unwrap().digest();
out.reserve(ECIES::header_len());
out.extend_from_slice(&header);
out.extend_from_slice(tag.as_slice());
}
pub fn read_header(&mut self, data: &mut [u8]) -> Result<usize, ECIESError> {
// If the data is not large enough to fit the header and mac bytes, return an error
//
// The header is 16 bytes, and the mac is 16 bytes, so the data must be at least 32 bytes
if data.len() < 32 {
return Err(ECIESErrorImpl::InvalidHeader.into())
}
let (header_bytes, mac_bytes) = split_at_mut(data, 16)?;
let header = HeaderBytes::from_mut_slice(header_bytes);
let mac = B128::from_slice(&mac_bytes[..16]);
self.ingress_mac.as_mut().unwrap().update_header(header);
let check_mac = self.ingress_mac.as_mut().unwrap().digest();
if check_mac != mac {
return Err(ECIESErrorImpl::TagCheckHeaderFailed.into())
}
self.ingress_aes.as_mut().unwrap().apply_keystream(header);
if header.as_slice().len() < 3 {
return Err(ECIESErrorImpl::InvalidHeader.into())
}
let body_size = usize::try_from(header.as_slice().read_uint::<BigEndian>(3)?)?;
self.body_size = Some(body_size);
Ok(self.body_size.unwrap())
}
pub const fn header_len() -> usize {
32
}
pub fn body_len(&self) -> usize {
let len = self.body_size.unwrap();
(if len % 16 == 0 { len } else { (len / 16 + 1) * 16 }) + 16
}
#[cfg(test)]
fn create_body(&mut self, data: &[u8]) -> BytesMut {
let mut out = BytesMut::new();
self.write_body(&mut out, data);
out
}
pub fn write_body(&mut self, out: &mut BytesMut, data: &[u8]) {
let len = if data.len() % 16 == 0 { data.len() } else { (data.len() / 16 + 1) * 16 };
let old_len = out.len();
out.resize(old_len + len, 0);
let encrypted = &mut out[old_len..old_len + len];
encrypted[..data.len()].copy_from_slice(data);
self.egress_aes.as_mut().unwrap().apply_keystream(encrypted);
self.egress_mac.as_mut().unwrap().update_body(encrypted);
let tag = self.egress_mac.as_mut().unwrap().digest();
out.extend_from_slice(tag.as_slice());
}
pub fn read_body<'a>(&mut self, data: &'a mut [u8]) -> Result<&'a mut [u8], ECIESError> {
// error if the data is too small to contain the tag
// TODO: create a custom type similar to EncryptedMessage for parsing, checking MACs, and
// decrypting the body
let mac_index = data.len().checked_sub(16).ok_or(ECIESErrorImpl::EncryptedDataTooSmall)?;
let (body, mac_bytes) = split_at_mut(data, mac_index)?;
let mac = B128::from_slice(mac_bytes);
self.ingress_mac.as_mut().unwrap().update_body(body);
let check_mac = self.ingress_mac.as_mut().unwrap().digest();
if check_mac != mac {
return Err(ECIESErrorImpl::TagCheckBodyFailed.into())
}
let size = self.body_size.unwrap();
self.body_size = None;
let ret = body;
self.ingress_aes.as_mut().unwrap().apply_keystream(ret);
Ok(split_at_mut(ret, size)?.0)
}
}
#[cfg(test)]
mod tests {
use super::*;
use reth_primitives::{b256, hex};
#[test]
fn ecdh() {
let our_secret_key = SecretKey::from_slice(&hex!(
"202a36e24c3eb39513335ec99a7619bad0e7dc68d69401b016253c7d26dc92f8"
))
.unwrap();
let remote_public_key = id2pk(hex!("d860a01f9722d78051619d1e2351aba3f43f943f6f00718d1b9baa4101932a1f5011f16bb2b1bb35db20d6fe28fa0bf09636d26a87d31de9ec6203eeedb1f666").into()).unwrap();
assert_eq!(
ecdh_x(&remote_public_key, &our_secret_key),
hex!("821ce7e01ea11b111a52b2dafae8a3031a372d83bdf1a78109fa0783c2b9d5d3")
)
}
#[test]
fn communicate() {
let mut rng = thread_rng();
let server_secret_key = SecretKey::new(&mut rng);
let server_public_key = PublicKey::from_secret_key(SECP256K1, &server_secret_key);
let client_secret_key = SecretKey::new(&mut rng);
let mut server_ecies = ECIES::new_server(server_secret_key).unwrap();
let mut client_ecies =
ECIES::new_client(client_secret_key, pk2id(&server_public_key)).unwrap();
// Handshake
let mut auth = client_ecies.create_auth();
server_ecies.read_auth(&mut auth).unwrap();
let mut ack = server_ecies.create_ack();
client_ecies.read_ack(&mut ack).unwrap();
let mut ack = client_ecies.create_ack();
server_ecies.read_ack(&mut ack).unwrap();
let server_to_client_data = [0u8, 1u8, 2u8, 3u8, 4u8];
let client_to_server_data = [5u8, 6u8, 7u8];
// Test server to client 1
let mut header = server_ecies.create_header(server_to_client_data.len());
assert_eq!(header.len(), ECIES::header_len());
client_ecies.read_header(&mut header).unwrap();
let mut body = server_ecies.create_body(&server_to_client_data);
assert_eq!(body.len(), client_ecies.body_len());
let ret = client_ecies.read_body(&mut body).unwrap();
assert_eq!(ret, server_to_client_data);
// Test client to server 1
server_ecies
.read_header(&mut client_ecies.create_header(client_to_server_data.len()))
.unwrap();
let mut b = client_ecies.create_body(&client_to_server_data);
let ret = server_ecies.read_body(&mut b).unwrap();
assert_eq!(ret, client_to_server_data);
// Test server to client 2
client_ecies
.read_header(&mut server_ecies.create_header(server_to_client_data.len()))
.unwrap();
let mut b = server_ecies.create_body(&server_to_client_data);
let ret = client_ecies.read_body(&mut b).unwrap();
assert_eq!(ret, server_to_client_data);
// Test server to client 3
client_ecies
.read_header(&mut server_ecies.create_header(server_to_client_data.len()))
.unwrap();
let mut b = server_ecies.create_body(&server_to_client_data);
let ret = client_ecies.read_body(&mut b).unwrap();
assert_eq!(ret, server_to_client_data);
// Test client to server 2
server_ecies
.read_header(&mut client_ecies.create_header(client_to_server_data.len()))
.unwrap();
let mut b = client_ecies.create_body(&client_to_server_data);
let ret = server_ecies.read_body(&mut b).unwrap();
assert_eq!(ret, client_to_server_data);
// Test client to server 3
server_ecies
.read_header(&mut client_ecies.create_header(client_to_server_data.len()))
.unwrap();
let mut b = client_ecies.create_body(&client_to_server_data);
let ret = server_ecies.read_body(&mut b).unwrap();
assert_eq!(ret, client_to_server_data);
}
fn eip8_test_server_key() -> SecretKey {
SecretKey::from_slice(&hex!(
"b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291"
))
.unwrap()
}
fn eip8_test_client() -> ECIES {
let client_static_key = SecretKey::from_slice(&hex!(
"49a7b37aa6f6645917e7b807e9d1c00d4fa71f18343b0d4122a4d2df64dd6fee"
))
.unwrap();
let client_ephemeral_key = SecretKey::from_slice(&hex!(
"869d6ecf5211f1cc60418a13b9d870b22959d0c16f02bec714c960dd2298a32d"
))
.unwrap();
let client_nonce =
b256!("7e968bba13b6c50e2c4cd7f241cc0d64d1ac25c7f5952df231ac6a2bda8ee5d6");
let server_id = pk2id(&PublicKey::from_secret_key(SECP256K1, &eip8_test_server_key()));
ECIES::new_static_client(client_static_key, server_id, client_nonce, client_ephemeral_key)
.unwrap()
}
fn eip8_test_server() -> ECIES {
let server_ephemeral_key = SecretKey::from_slice(&hex!(
"e238eb8e04fee6511ab04c6dd3c89ce097b11f25d584863ac2b6d5b35b1847e4"
))
.unwrap();
let server_nonce =
b256!("559aead08264d5795d3909718cdd05abd49572e84fe55590eef31a88a08fdffd");
ECIES::new_static_server(eip8_test_server_key(), server_nonce, server_ephemeral_key)
.unwrap()
}
#[test]
/// Test vectors from https://eips.ethereum.org/EIPS/eip-8
fn eip8_test() {
// EIP-8 format with version 4 and no additional list elements
let auth2 = hex!(
"
01b304ab7578555167be8154d5cc456f567d5ba302662433674222360f08d5f1534499d3678b513b
0fca474f3a514b18e75683032eb63fccb16c156dc6eb2c0b1593f0d84ac74f6e475f1b8d56116b84
9634a8c458705bf83a626ea0384d4d7341aae591fae42ce6bd5c850bfe0b999a694a49bbbaf3ef6c
da61110601d3b4c02ab6c30437257a6e0117792631a4b47c1d52fc0f8f89caadeb7d02770bf999cc
147d2df3b62e1ffb2c9d8c125a3984865356266bca11ce7d3a688663a51d82defaa8aad69da39ab6
d5470e81ec5f2a7a47fb865ff7cca21516f9299a07b1bc63ba56c7a1a892112841ca44b6e0034dee
70c9adabc15d76a54f443593fafdc3b27af8059703f88928e199cb122362a4b35f62386da7caad09
c001edaeb5f8a06d2b26fb6cb93c52a9fca51853b68193916982358fe1e5369e249875bb8d0d0ec3
6f917bc5e1eafd5896d46bd61ff23f1a863a8a8dcd54c7b109b771c8e61ec9c8908c733c0263440e
2aa067241aaa433f0bb053c7b31a838504b148f570c0ad62837129e547678c5190341e4f1693956c
3bf7678318e2d5b5340c9e488eefea198576344afbdf66db5f51204a6961a63ce072c8926c
"
);
// EIP-8 format with version 56 and 3 additional list elements (sent from A to B)
let auth3 = hex!(
"
01b8044c6c312173685d1edd268aa95e1d495474c6959bcdd10067ba4c9013df9e40ff45f5bfd6f7
2471f93a91b493f8e00abc4b80f682973de715d77ba3a005a242eb859f9a211d93a347fa64b597bf
280a6b88e26299cf263b01b8dfdb712278464fd1c25840b995e84d367d743f66c0e54a586725b7bb
f12acca27170ae3283c1073adda4b6d79f27656993aefccf16e0d0409fe07db2dc398a1b7e8ee93b
cd181485fd332f381d6a050fba4c7641a5112ac1b0b61168d20f01b479e19adf7fdbfa0905f63352
bfc7e23cf3357657455119d879c78d3cf8c8c06375f3f7d4861aa02a122467e069acaf513025ff19
6641f6d2810ce493f51bee9c966b15c5043505350392b57645385a18c78f14669cc4d960446c1757
1b7c5d725021babbcd786957f3d17089c084907bda22c2b2675b4378b114c601d858802a55345a15
116bc61da4193996187ed70d16730e9ae6b3bb8787ebcaea1871d850997ddc08b4f4ea668fbf3740
7ac044b55be0908ecb94d4ed172ece66fd31bfdadf2b97a8bc690163ee11f5b575a4b44e36e2bfb2
f0fce91676fd64c7773bac6a003f481fddd0bae0a1f31aa27504e2a533af4cef3b623f4791b2cca6
d490
"
);
// EIP-8 format with version 4 and no additional list elements (sent from B to A)
let ack2 = hex!(
"
01ea0451958701280a56482929d3b0757da8f7fbe5286784beead59d95089c217c9b917788989470
b0e330cc6e4fb383c0340ed85fab836ec9fb8a49672712aeabbdfd1e837c1ff4cace34311cd7f4de
05d59279e3524ab26ef753a0095637ac88f2b499b9914b5f64e143eae548a1066e14cd2f4bd7f814
c4652f11b254f8a2d0191e2f5546fae6055694aed14d906df79ad3b407d94692694e259191cde171
ad542fc588fa2b7333313d82a9f887332f1dfc36cea03f831cb9a23fea05b33deb999e85489e645f
6aab1872475d488d7bd6c7c120caf28dbfc5d6833888155ed69d34dbdc39c1f299be1057810f34fb
e754d021bfca14dc989753d61c413d261934e1a9c67ee060a25eefb54e81a4d14baff922180c395d
3f998d70f46f6b58306f969627ae364497e73fc27f6d17ae45a413d322cb8814276be6ddd13b885b
201b943213656cde498fa0e9ddc8e0b8f8a53824fbd82254f3e2c17e8eaea009c38b4aa0a3f306e8
797db43c25d68e86f262e564086f59a2fc60511c42abfb3057c247a8a8fe4fb3ccbadde17514b7ac
8000cdb6a912778426260c47f38919a91f25f4b5ffb455d6aaaf150f7e5529c100ce62d6d92826a7
1778d809bdf60232ae21ce8a437eca8223f45ac37f6487452ce626f549b3b5fdee26afd2072e4bc7
5833c2464c805246155289f4
"
);
// EIP-8 format with version 57 and 3 additional list elements (sent from B to A)
let ack3 = hex!(
"
01f004076e58aae772bb101ab1a8e64e01ee96e64857ce82b1113817c6cdd52c09d26f7b90981cd7
ae835aeac72e1573b8a0225dd56d157a010846d888dac7464baf53f2ad4e3d584531fa203658fab0
3a06c9fd5e35737e417bc28c1cbf5e5dfc666de7090f69c3b29754725f84f75382891c561040ea1d
dc0d8f381ed1b9d0d4ad2a0ec021421d847820d6fa0ba66eaf58175f1b235e851c7e2124069fbc20
2888ddb3ac4d56bcbd1b9b7eab59e78f2e2d400905050f4a92dec1c4bdf797b3fc9b2f8e84a482f3
d800386186712dae00d5c386ec9387a5e9c9a1aca5a573ca91082c7d68421f388e79127a5177d4f8
590237364fd348c9611fa39f78dcdceee3f390f07991b7b47e1daa3ebcb6ccc9607811cb17ce51f1
c8c2c5098dbdd28fca547b3f58c01a424ac05f869f49c6a34672ea2cbbc558428aa1fe48bbfd6115
8b1b735a65d99f21e70dbc020bfdface9f724a0d1fb5895db971cc81aa7608baa0920abb0a565c9c
436e2fd13323428296c86385f2384e408a31e104670df0791d93e743a3a5194ee6b076fb6323ca59
3011b7348c16cf58f66b9633906ba54a2ee803187344b394f75dd2e663a57b956cb830dd7a908d4f
39a2336a61ef9fda549180d4ccde21514d117b6c6fd07a9102b5efe710a32af4eeacae2cb3b1dec0
35b9593b48b9d3ca4c13d245d5f04169b0b1
"
);
eip8_test_server().read_auth(&mut auth2.to_vec()).unwrap();
eip8_test_server().read_auth(&mut auth3.to_vec()).unwrap();
let mut test_client = eip8_test_client();
let mut test_server = eip8_test_server();
test_server.read_auth(&mut test_client.create_auth()).unwrap();
test_client.read_ack(&mut test_server.create_ack()).unwrap();
test_client.read_ack(&mut ack2.to_vec()).unwrap();
test_client.read_ack(&mut ack3.to_vec()).unwrap();
}
#[test]
fn kdf_out_of_bounds() {
// ensures that the kdf method does not panic if the dest is too small
let len_range = 1..65;
for len in len_range {
let mut dest = vec![1u8; len];
kdf(
b256!("7000000000000000000000000000000000000000000000000000000000000007"),
&[0x01, 0x33, 0x70, 0xbe, 0xef],
&mut dest,
);
}
std::hint::black_box(());
}
}