Files
reth/crates/evm/src/execute.rs
2025-02-12 15:56:42 +00:00

644 lines
22 KiB
Rust

//! Traits for execution.
use alloy_consensus::BlockHeader;
// Re-export execution types
pub use reth_execution_errors::{
BlockExecutionError, BlockValidationError, InternalBlockExecutionError,
};
use reth_execution_types::BlockExecutionResult;
pub use reth_execution_types::{BlockExecutionOutput, ExecutionOutcome};
pub use reth_storage_errors::provider::ProviderError;
use crate::{system_calls::OnStateHook, Database};
use alloc::{boxed::Box, vec::Vec};
use alloy_eips::eip7685::Requests;
use alloy_primitives::{
map::{DefaultHashBuilder, HashMap},
Address,
};
use reth_consensus::ConsensusError;
use reth_primitives::{NodePrimitives, Receipt, RecoveredBlock};
use revm::db::{states::bundle_state::BundleRetention, State};
use revm_primitives::{Account, AccountStatus, EvmState};
/// A type that knows how to execute a block. It is assumed to operate on a
/// [`crate::Evm`] internally and use [`State`] as database.
pub trait Executor<DB: Database>: Sized {
/// The primitive types used by the executor.
type Primitives: NodePrimitives;
/// The error type returned by the executor.
type Error;
/// Executes a single block and returns [`BlockExecutionResult`], without the state changes.
fn execute_one(
&mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
) -> Result<BlockExecutionResult<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>;
/// Executes the EVM with the given input and accepts a state hook closure that is invoked with
/// the EVM state after execution.
fn execute_one_with_state_hook<F>(
&mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
state_hook: F,
) -> Result<BlockExecutionResult<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>
where
F: OnStateHook + 'static;
/// Consumes the type and executes the block.
///
/// # Note
/// Execution happens without any validation of the output.
///
/// # Returns
/// The output of the block execution.
fn execute(
mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
) -> Result<BlockExecutionOutput<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>
{
let BlockExecutionResult { receipts, requests, gas_used } = self.execute_one(block)?;
let mut state = self.into_state();
Ok(BlockExecutionOutput { state: state.take_bundle(), receipts, requests, gas_used })
}
/// Executes multiple inputs in the batch, and returns an aggregated [`ExecutionOutcome`].
fn execute_batch<'a, I>(
mut self,
blocks: I,
) -> Result<ExecutionOutcome<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>
where
I: IntoIterator<Item = &'a RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>>,
{
let mut results = Vec::new();
let mut first_block = None;
for block in blocks {
if first_block.is_none() {
first_block = Some(block.header().number());
}
results.push(self.execute_one(block)?);
}
Ok(ExecutionOutcome::from_blocks(
first_block.unwrap_or_default(),
self.into_state().take_bundle(),
results,
))
}
/// Executes the EVM with the given input and accepts a state closure that is invoked with
/// the EVM state after execution.
fn execute_with_state_closure<F>(
mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
mut f: F,
) -> Result<BlockExecutionOutput<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>
where
F: FnMut(&State<DB>),
{
let BlockExecutionResult { receipts, requests, gas_used } = self.execute_one(block)?;
let mut state = self.into_state();
f(&state);
Ok(BlockExecutionOutput { state: state.take_bundle(), receipts, requests, gas_used })
}
/// Executes the EVM with the given input and accepts a state hook closure that is invoked with
/// the EVM state after execution.
fn execute_with_state_hook<F>(
mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
state_hook: F,
) -> Result<BlockExecutionOutput<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>
where
F: OnStateHook + 'static,
{
let BlockExecutionResult { receipts, requests, gas_used } =
self.execute_one_with_state_hook(block, state_hook)?;
let mut state = self.into_state();
Ok(BlockExecutionOutput { state: state.take_bundle(), receipts, requests, gas_used })
}
/// Consumes the executor and returns the [`State`] containing all state changes.
fn into_state(self) -> State<DB>;
/// The size hint of the batch's tracked state size.
///
/// This is used to optimize DB commits depending on the size of the state.
fn size_hint(&self) -> usize;
}
/// A type that can create a new executor for block execution.
pub trait BlockExecutorProvider: Send + Sync + Clone + Unpin + 'static {
/// Receipt type.
type Primitives: NodePrimitives;
/// An executor that can execute a single block given a database.
///
/// # Verification
///
/// The on [`Executor::execute`] the executor is expected to validate the execution output of
/// the input, this includes:
/// - Cumulative gas used must match the input's gas used.
/// - Receipts must match the input's receipts root.
///
/// It is not expected to validate the state trie root, this must be done by the caller using
/// the returned state.
type Executor<DB: Database>: Executor<
DB,
Primitives = Self::Primitives,
Error = BlockExecutionError,
>;
/// Creates a new executor for single block execution.
///
/// This is used to execute a single block and get the changed state.
fn executor<DB>(&self, db: DB) -> Self::Executor<DB>
where
DB: Database;
}
/// Helper type for the output of executing a block.
#[derive(Debug, Clone)]
pub struct ExecuteOutput<R = Receipt> {
/// Receipts obtained after executing a block.
pub receipts: Vec<R>,
/// Cumulative gas used in the block execution.
pub gas_used: u64,
}
/// Defines the strategy for executing a single block.
pub trait BlockExecutionStrategy {
/// Database this strategy operates on.
type DB: revm::Database;
/// Primitive types used by the strategy.
type Primitives: NodePrimitives;
/// The error type returned by this strategy's methods.
type Error: core::error::Error;
/// Applies any necessary changes before executing the block's transactions.
fn apply_pre_execution_changes(
&mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
) -> Result<(), Self::Error>;
/// Executes all transactions in the block.
fn execute_transactions(
&mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
) -> Result<ExecuteOutput<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>;
/// Applies any necessary changes after executing the block's transactions.
fn apply_post_execution_changes(
&mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
receipts: &[<Self::Primitives as NodePrimitives>::Receipt],
) -> Result<Requests, Self::Error>;
/// Returns a reference to the current state.
fn state_ref(&self) -> &State<Self::DB>;
/// Returns a mutable reference to the current state.
fn state_mut(&mut self) -> &mut State<Self::DB>;
/// Consumes the strategy and returns inner [`State`].
fn into_state(self) -> State<Self::DB>;
/// Sets a hook to be called after each state change during execution.
fn with_state_hook(&mut self, _hook: Option<Box<dyn OnStateHook>>) {}
/// Validate a block with regard to execution results.
fn validate_block_post_execution(
&self,
_block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
_receipts: &[<Self::Primitives as NodePrimitives>::Receipt],
_requests: &Requests,
) -> Result<(), ConsensusError> {
Ok(())
}
}
/// A strategy factory that can create block execution strategies.
pub trait BlockExecutionStrategyFactory: Send + Sync + Clone + Unpin + 'static {
/// Primitive types used by the strategy.
type Primitives: NodePrimitives;
/// Associated strategy type.
type Strategy<DB: Database>: BlockExecutionStrategy<
DB = DB,
Primitives = Self::Primitives,
Error = BlockExecutionError,
>;
/// Creates a strategy using the give database.
fn create_strategy<DB>(&self, db: DB) -> Self::Strategy<DB>
where
DB: Database;
}
impl<F> Clone for BasicBlockExecutorProvider<F>
where
F: Clone,
{
fn clone(&self) -> Self {
Self { strategy_factory: self.strategy_factory.clone() }
}
}
/// A generic block executor provider that can create executors using a strategy factory.
#[allow(missing_debug_implementations)]
pub struct BasicBlockExecutorProvider<F> {
strategy_factory: F,
}
impl<F> BasicBlockExecutorProvider<F> {
/// Creates a new `BasicBlockExecutorProvider` with the given strategy factory.
pub const fn new(strategy_factory: F) -> Self {
Self { strategy_factory }
}
}
impl<F> BlockExecutorProvider for BasicBlockExecutorProvider<F>
where
F: BlockExecutionStrategyFactory,
{
type Primitives = F::Primitives;
type Executor<DB: Database> = BasicBlockExecutor<F::Strategy<DB>>;
fn executor<DB>(&self, db: DB) -> Self::Executor<DB>
where
DB: Database,
{
let strategy = self.strategy_factory.create_strategy(db);
BasicBlockExecutor::new(strategy)
}
}
/// A generic block executor that uses a [`BlockExecutionStrategy`] to
/// execute blocks.
#[allow(missing_debug_implementations, dead_code)]
pub struct BasicBlockExecutor<S> {
/// Block execution strategy.
pub(crate) strategy: S,
}
impl<S> BasicBlockExecutor<S> {
/// Creates a new `BasicBlockExecutor` with the given strategy.
pub const fn new(strategy: S) -> Self {
Self { strategy }
}
}
impl<S, DB> Executor<DB> for BasicBlockExecutor<S>
where
S: BlockExecutionStrategy<DB = DB>,
DB: Database,
{
type Primitives = S::Primitives;
type Error = S::Error;
fn execute_one(
&mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
) -> Result<BlockExecutionResult<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>
{
self.strategy.apply_pre_execution_changes(block)?;
let ExecuteOutput { receipts, gas_used } = self.strategy.execute_transactions(block)?;
let requests = self.strategy.apply_post_execution_changes(block, &receipts)?;
self.strategy.state_mut().merge_transitions(BundleRetention::Reverts);
Ok(BlockExecutionResult { receipts, requests, gas_used })
}
fn execute_one_with_state_hook<F>(
&mut self,
block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
state_hook: F,
) -> Result<BlockExecutionResult<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>
where
F: OnStateHook + 'static,
{
self.strategy.with_state_hook(Some(Box::new(state_hook)));
let result = self.execute_one(block);
self.strategy.with_state_hook(None);
result
}
fn into_state(self) -> State<DB> {
self.strategy.into_state()
}
fn size_hint(&self) -> usize {
self.strategy.state_ref().bundle_state.size_hint()
}
}
/// Creates an `EvmState` from a map of balance increments and the current state
/// to load accounts from. No balance increment is done in the function.
/// Zero balance increments are ignored and won't create state entries.
pub fn balance_increment_state<DB>(
balance_increments: &HashMap<Address, u128, DefaultHashBuilder>,
state: &mut State<DB>,
) -> Result<EvmState, BlockExecutionError>
where
DB: Database,
{
let mut load_account = |address: &Address| -> Result<(Address, Account), BlockExecutionError> {
let cache_account = state.load_cache_account(*address).map_err(|_| {
BlockExecutionError::msg("could not load account for balance increment")
})?;
let account = cache_account.account.as_ref().ok_or_else(|| {
BlockExecutionError::msg("could not load account for balance increment")
})?;
Ok((
*address,
Account {
info: account.info.clone(),
storage: Default::default(),
status: AccountStatus::Touched,
},
))
};
balance_increments
.iter()
.filter(|(_, &balance)| balance != 0)
.map(|(addr, _)| load_account(addr))
.collect::<Result<EvmState, _>>()
}
#[cfg(test)]
mod tests {
use super::*;
use alloy_primitives::U256;
use core::marker::PhantomData;
use reth_chainspec::{ChainSpec, MAINNET};
use reth_primitives::EthPrimitives;
use revm::db::{CacheDB, EmptyDBTyped};
use revm_primitives::{address, bytes, AccountInfo, KECCAK_EMPTY};
use std::sync::Arc;
#[derive(Clone, Default)]
struct TestExecutorProvider;
impl BlockExecutorProvider for TestExecutorProvider {
type Primitives = EthPrimitives;
type Executor<DB: Database> = TestExecutor<DB>;
fn executor<DB>(&self, _db: DB) -> Self::Executor<DB>
where
DB: Database,
{
TestExecutor(PhantomData)
}
}
struct TestExecutor<DB>(PhantomData<DB>);
impl<DB: Database> Executor<DB> for TestExecutor<DB> {
type Primitives = EthPrimitives;
type Error = BlockExecutionError;
fn execute_one(
&mut self,
_block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
) -> Result<BlockExecutionResult<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>
{
Err(BlockExecutionError::msg("execution unavailable for tests"))
}
fn execute_one_with_state_hook<F>(
&mut self,
_block: &RecoveredBlock<<Self::Primitives as NodePrimitives>::Block>,
_state_hook: F,
) -> Result<BlockExecutionResult<<Self::Primitives as NodePrimitives>::Receipt>, Self::Error>
where
F: OnStateHook + 'static,
{
Err(BlockExecutionError::msg("execution unavailable for tests"))
}
fn into_state(self) -> State<DB> {
unreachable!()
}
fn size_hint(&self) -> usize {
0
}
}
struct TestExecutorStrategy<DB, EvmConfig> {
// chain spec and evm config here only to illustrate how the strategy
// factory can use them in a real use case.
_chain_spec: Arc<ChainSpec>,
_evm_config: EvmConfig,
state: State<DB>,
execute_transactions_result: ExecuteOutput<Receipt>,
apply_post_execution_changes_result: Requests,
}
#[derive(Clone)]
struct TestExecutorStrategyFactory {
execute_transactions_result: ExecuteOutput<Receipt>,
apply_post_execution_changes_result: Requests,
}
impl BlockExecutionStrategyFactory for TestExecutorStrategyFactory {
type Primitives = EthPrimitives;
type Strategy<DB: Database> = TestExecutorStrategy<DB, TestEvmConfig>;
fn create_strategy<DB>(&self, db: DB) -> Self::Strategy<DB>
where
DB: Database,
{
let state = State::builder()
.with_database(db)
.with_bundle_update()
.without_state_clear()
.build();
TestExecutorStrategy {
_chain_spec: MAINNET.clone(),
_evm_config: TestEvmConfig {},
execute_transactions_result: self.execute_transactions_result.clone(),
apply_post_execution_changes_result: self
.apply_post_execution_changes_result
.clone(),
state,
}
}
}
impl<DB> BlockExecutionStrategy for TestExecutorStrategy<DB, TestEvmConfig>
where
DB: Database,
{
type DB = DB;
type Primitives = EthPrimitives;
type Error = BlockExecutionError;
fn apply_pre_execution_changes(
&mut self,
_block: &RecoveredBlock<reth_primitives::Block>,
) -> Result<(), Self::Error> {
Ok(())
}
fn execute_transactions(
&mut self,
_block: &RecoveredBlock<reth_primitives::Block>,
) -> Result<ExecuteOutput<Receipt>, Self::Error> {
Ok(self.execute_transactions_result.clone())
}
fn apply_post_execution_changes(
&mut self,
_block: &RecoveredBlock<reth_primitives::Block>,
_receipts: &[Receipt],
) -> Result<Requests, Self::Error> {
Ok(self.apply_post_execution_changes_result.clone())
}
fn state_ref(&self) -> &State<DB> {
&self.state
}
fn state_mut(&mut self) -> &mut State<DB> {
&mut self.state
}
fn into_state(self) -> State<Self::DB> {
self.state
}
}
#[derive(Clone)]
struct TestEvmConfig {}
#[test]
fn test_provider() {
let provider = TestExecutorProvider;
let db = CacheDB::<EmptyDBTyped<ProviderError>>::default();
let executor = provider.executor(db);
let _ = executor.execute(&Default::default());
}
#[test]
fn test_strategy() {
let expected_gas_used = 10;
let expected_receipts = vec![Receipt::default()];
let expected_execute_transactions_result = ExecuteOutput::<Receipt> {
receipts: expected_receipts.clone(),
gas_used: expected_gas_used,
};
let expected_apply_post_execution_changes_result = Requests::new(vec![bytes!("deadbeef")]);
let strategy_factory = TestExecutorStrategyFactory {
execute_transactions_result: expected_execute_transactions_result,
apply_post_execution_changes_result: expected_apply_post_execution_changes_result
.clone(),
};
let provider = BasicBlockExecutorProvider::new(strategy_factory);
let db = CacheDB::<EmptyDBTyped<ProviderError>>::default();
let executor = provider.executor(db);
let result = executor.execute(&Default::default());
assert!(result.is_ok());
let block_execution_output = result.unwrap();
assert_eq!(block_execution_output.gas_used, expected_gas_used);
assert_eq!(block_execution_output.receipts, expected_receipts);
assert_eq!(block_execution_output.requests, expected_apply_post_execution_changes_result);
}
fn setup_state_with_account(
addr: Address,
balance: u128,
nonce: u64,
) -> State<CacheDB<EmptyDBTyped<BlockExecutionError>>> {
let db = CacheDB::<EmptyDBTyped<BlockExecutionError>>::default();
let mut state = State::builder().with_database(db).with_bundle_update().build();
let account_info = AccountInfo {
balance: U256::from(balance),
nonce,
code_hash: KECCAK_EMPTY,
code: None,
};
state.insert_account(addr, account_info);
state
}
#[test]
fn test_balance_increment_state_zero() {
let addr = address!("1000000000000000000000000000000000000000");
let mut state = setup_state_with_account(addr, 100, 1);
let mut increments = HashMap::<Address, u128, DefaultHashBuilder>::default();
increments.insert(addr, 0);
let result = balance_increment_state(&increments, &mut state).unwrap();
assert!(result.is_empty(), "Zero increments should be ignored");
}
#[test]
fn test_balance_increment_state_empty_increments_map() {
let mut state = State::builder()
.with_database(CacheDB::<EmptyDBTyped<BlockExecutionError>>::default())
.with_bundle_update()
.build();
let increments = HashMap::<Address, u128, DefaultHashBuilder>::default();
let result = balance_increment_state(&increments, &mut state).unwrap();
assert!(result.is_empty(), "Empty increments map should return empty state");
}
#[test]
fn test_balance_increment_state_multiple_valid_increments() {
let addr1 = address!("1000000000000000000000000000000000000000");
let addr2 = address!("2000000000000000000000000000000000000000");
let mut state = setup_state_with_account(addr1, 100, 1);
let account2 =
AccountInfo { balance: U256::from(200), nonce: 1, code_hash: KECCAK_EMPTY, code: None };
state.insert_account(addr2, account2);
let mut increments = HashMap::<Address, u128, DefaultHashBuilder>::default();
increments.insert(addr1, 50);
increments.insert(addr2, 100);
let result = balance_increment_state(&increments, &mut state).unwrap();
assert_eq!(result.len(), 2);
assert_eq!(result.get(&addr1).unwrap().info.balance, U256::from(100));
assert_eq!(result.get(&addr2).unwrap().info.balance, U256::from(200));
}
#[test]
fn test_balance_increment_state_mixed_zero_and_nonzero_increments() {
let addr1 = address!("1000000000000000000000000000000000000000");
let addr2 = address!("2000000000000000000000000000000000000000");
let mut state = setup_state_with_account(addr1, 100, 1);
let account2 =
AccountInfo { balance: U256::from(200), nonce: 1, code_hash: KECCAK_EMPTY, code: None };
state.insert_account(addr2, account2);
let mut increments = HashMap::<Address, u128, DefaultHashBuilder>::default();
increments.insert(addr1, 0);
increments.insert(addr2, 100);
let result = balance_increment_state(&increments, &mut state).unwrap();
assert_eq!(result.len(), 1, "Only non-zero increments should be included");
assert!(!result.contains_key(&addr1), "Zero increment account should not be included");
assert_eq!(result.get(&addr2).unwrap().info.balance, U256::from(200));
}
}