Files
scroll/bridge/mock_bridge/MockBridgeL1.sol
Haichen Shen fb7002bd6d feat(bridge): update the watcher and relayer based on the new contract (#305)
Co-authored-by: colinlyguo <651734127@qq.com>
Co-authored-by: zimpha <zimpha@gmail.com>
Co-authored-by: HAOYUatHZ <37070449+HAOYUatHZ@users.noreply.github.com>
Co-authored-by: HAOYUatHZ <haoyu@protonmail.com>
2023-02-22 18:15:44 +08:00

381 lines
12 KiB
Solidity

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
contract MockBridgeL1 {
/******************************
* Events from L1MessageQueue *
******************************/
/// @notice Emitted when a new L1 => L2 transaction is appended to the queue.
/// @param sender The address of account who initiates the transaction.
/// @param target The address of account who will recieve the transaction.
/// @param value The value passed with the transaction.
/// @param queueIndex The index of this transaction in the queue.
/// @param gasLimit Gas limit required to complete the message relay on L2.
/// @param data The calldata of the transaction.
event QueueTransaction(
address indexed sender,
address indexed target,
uint256 value,
uint256 queueIndex,
uint256 gasLimit,
bytes data
);
/*********************************
* Events from L1ScrollMessenger *
*********************************/
/// @notice Emitted when a cross domain message is sent.
/// @param sender The address of the sender who initiates the message.
/// @param target The address of target contract to call.
/// @param value The amount of value passed to the target contract.
/// @param messageNonce The nonce of the message.
/// @param gasLimit The optional gas limit passed to L1 or L2.
/// @param message The calldata passed to the target contract.
event SentMessage(
address indexed sender,
address indexed target,
uint256 value,
uint256 messageNonce,
uint256 gasLimit,
bytes message
);
/// @notice Emitted when a cross domain message is relayed successfully.
/// @param messageHash The hash of the message.
event RelayedMessage(bytes32 indexed messageHash);
/// @dev The maximum number of transaction in on batch.
uint256 public immutable maxNumTxInBatch;
/// @dev The hash used for padding public inputs.
bytes32 public immutable paddingTxHash;
/***************************
* Events from ScrollChain *
***************************/
/// @notice Emitted when a new batch is commited.
/// @param batchHash The hash of the batch
event CommitBatch(bytes32 indexed batchHash);
/// @notice Emitted when a batch is reverted.
/// @param batchHash The identification of the batch.
event RevertBatch(bytes32 indexed batchHash);
/// @notice Emitted when a batch is finalized.
/// @param batchHash The hash of the batch
event FinalizeBatch(bytes32 indexed batchHash);
/***********
* Structs *
***********/
struct BlockContext {
// The hash of this block.
bytes32 blockHash;
// The parent hash of this block.
bytes32 parentHash;
// The height of this block.
uint64 blockNumber;
// The timestamp of this block.
uint64 timestamp;
// The base fee of this block.
// Currently, it is not used, because we disable EIP-1559.
// We keep it for future proof.
uint256 baseFee;
// The gas limit of this block.
uint64 gasLimit;
// The number of transactions in this block, both L1 & L2 txs.
uint16 numTransactions;
// The number of l1 messages in this block.
uint16 numL1Messages;
}
struct Batch {
// The list of blocks in this batch
BlockContext[] blocks; // MAX_NUM_BLOCKS = 100, about 5 min
// The state root of previous batch.
// The first batch will use 0x0 for prevStateRoot
bytes32 prevStateRoot;
// The state root of the last block in this batch.
bytes32 newStateRoot;
// The withdraw trie root of the last block in this batch.
bytes32 withdrawTrieRoot;
// The index of the batch.
uint64 batchIndex;
// The parent batch hash.
bytes32 parentBatchHash;
// Concatenated raw data of RLP encoded L2 txs
bytes l2Transactions;
}
struct L2MessageProof {
// The hash of the batch where the message belongs to.
bytes32 batchHash;
// Concatenation of merkle proof for withdraw merkle trie.
bytes merkleProof;
}
/*************
* Variables *
*************/
/// @notice Message nonce, used to avoid relay attack.
uint256 public messageNonce;
/***************
* Constructor *
***************/
constructor() {
maxNumTxInBatch = 44;
paddingTxHash = 0x0000000000000000000000000000000000000000000000000000000000000000;
}
/***********************************
* Functions from L2GasPriceOracle *
***********************************/
function setL2BaseFee(uint256) external {
}
/************************************
* Functions from L1ScrollMessenger *
************************************/
function sendMessage(
address target,
uint256 value,
bytes calldata message,
uint256 gasLimit
) external payable {
bytes memory _xDomainCalldata = _encodeXDomainCalldata(msg.sender, target, value, messageNonce, message);
{
address _sender = applyL1ToL2Alias(address(this));
emit QueueTransaction(_sender, target, 0, messageNonce, gasLimit, _xDomainCalldata);
}
emit SentMessage(msg.sender, target, value, messageNonce, gasLimit, message);
messageNonce += 1;
}
function relayMessageWithProof(
address _from,
address _to,
uint256 _value,
uint256 _nonce,
bytes memory _message,
L2MessageProof memory
) external {
bytes memory _xDomainCalldata = _encodeXDomainCalldata(_from, _to, _value, _nonce, _message);
bytes32 _xDomainCalldataHash = keccak256(_xDomainCalldata);
emit RelayedMessage(_xDomainCalldataHash);
}
/******************************
* Functions from ScrollChain *
******************************/
function commitBatch(Batch memory _batch) external {
_commitBatch(_batch);
}
function commitBatches(Batch[] memory _batches) external {
for (uint256 i = 0; i < _batches.length; i++) {
_commitBatch(_batches[i]);
}
}
function revertBatch(bytes32 _batchHash) external {
emit RevertBatch(_batchHash);
}
function finalizeBatchWithProof(
bytes32 _batchHash,
uint256[] memory,
uint256[] memory
) external {
emit FinalizeBatch(_batchHash);
}
/**********************
* Internal Functions *
**********************/
function _commitBatch(Batch memory _batch) internal {
bytes32 _batchHash = _computePublicInputHash(_batch);
emit CommitBatch(_batchHash);
}
/// @dev Internal function to generate the correct cross domain calldata for a message.
/// @param _sender Message sender address.
/// @param _target Target contract address.
/// @param _value The amount of ETH pass to the target.
/// @param _messageNonce Nonce for the provided message.
/// @param _message Message to send to the target.
/// @return ABI encoded cross domain calldata.
function _encodeXDomainCalldata(
address _sender,
address _target,
uint256 _value,
uint256 _messageNonce,
bytes memory _message
) internal pure returns (bytes memory) {
return
abi.encodeWithSignature(
"relayMessage(address,address,uint256,uint256,bytes)",
_sender,
_target,
_value,
_messageNonce,
_message
);
}
function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
uint160 offset = uint160(0x1111000000000000000000000000000000001111);
unchecked {
l2Address = address(uint160(l1Address) + offset);
}
}
/// @dev Internal function to compute the public input hash.
/// @param batch The batch to compute.
function _computePublicInputHash(Batch memory batch)
internal
view
returns (
bytes32
)
{
uint256 publicInputsPtr;
// 1. append prevStateRoot, newStateRoot and withdrawTrieRoot to public inputs
{
bytes32 prevStateRoot = batch.prevStateRoot;
bytes32 newStateRoot = batch.newStateRoot;
bytes32 withdrawTrieRoot = batch.withdrawTrieRoot;
// number of bytes in public inputs: 32 * 3 + 124 * blocks + 32 * MAX_NUM_TXS
uint256 publicInputsSize = 32 * 3 + batch.blocks.length * 124 + 32 * maxNumTxInBatch;
assembly {
publicInputsPtr := mload(0x40)
mstore(0x40, add(publicInputsPtr, publicInputsSize))
mstore(publicInputsPtr, prevStateRoot)
publicInputsPtr := add(publicInputsPtr, 0x20)
mstore(publicInputsPtr, newStateRoot)
publicInputsPtr := add(publicInputsPtr, 0x20)
mstore(publicInputsPtr, withdrawTrieRoot)
publicInputsPtr := add(publicInputsPtr, 0x20)
}
}
uint64 numTransactionsInBatch;
BlockContext memory _block;
// 2. append block information to public inputs.
for (uint256 i = 0; i < batch.blocks.length; i++) {
// validate blocks, we won't check first block against previous batch.
{
BlockContext memory _currentBlock = batch.blocks[i];
if (i > 0) {
require(_block.blockHash == _currentBlock.parentHash, "Parent hash mismatch");
require(_block.blockNumber + 1 == _currentBlock.blockNumber, "Block number mismatch");
}
_block = _currentBlock;
}
// append blockHash and parentHash to public inputs
{
bytes32 blockHash = _block.blockHash;
bytes32 parentHash = _block.parentHash;
assembly {
mstore(publicInputsPtr, blockHash)
publicInputsPtr := add(publicInputsPtr, 0x20)
mstore(publicInputsPtr, parentHash)
publicInputsPtr := add(publicInputsPtr, 0x20)
}
}
// append blockNumber and blockTimestamp to public inputs
{
uint256 blockNumber = _block.blockNumber;
uint256 blockTimestamp = _block.timestamp;
assembly {
mstore(publicInputsPtr, shl(192, blockNumber))
publicInputsPtr := add(publicInputsPtr, 0x8)
mstore(publicInputsPtr, shl(192, blockTimestamp))
publicInputsPtr := add(publicInputsPtr, 0x8)
}
}
// append baseFee to public inputs
{
uint256 baseFee = _block.baseFee;
assembly {
mstore(publicInputsPtr, baseFee)
publicInputsPtr := add(publicInputsPtr, 0x20)
}
}
uint64 numTransactionsInBlock = _block.numTransactions;
// gasLimit, numTransactions and numL1Messages to public inputs
{
uint256 gasLimit = _block.gasLimit;
uint256 numL1MessagesInBlock = _block.numL1Messages;
assembly {
mstore(publicInputsPtr, shl(192, gasLimit))
publicInputsPtr := add(publicInputsPtr, 0x8)
mstore(publicInputsPtr, shl(240, numTransactionsInBlock))
publicInputsPtr := add(publicInputsPtr, 0x2)
mstore(publicInputsPtr, shl(240, numL1MessagesInBlock))
publicInputsPtr := add(publicInputsPtr, 0x2)
}
}
numTransactionsInBatch += numTransactionsInBlock;
}
require(numTransactionsInBatch <= maxNumTxInBatch, "Too many transactions in batch");
// 3. append transaction hash to public inputs.
uint256 _l2TxnPtr;
{
bytes memory l2Transactions = batch.l2Transactions;
assembly {
_l2TxnPtr := add(l2Transactions, 0x20)
}
}
for (uint256 i = 0; i < batch.blocks.length; i++) {
uint256 numL1MessagesInBlock = batch.blocks[i].numL1Messages;
require(numL1MessagesInBlock == 0);
uint256 numTransactionsInBlock = batch.blocks[i].numTransactions;
for (uint256 j = numL1MessagesInBlock; j < numTransactionsInBlock; ++j) {
bytes32 hash;
assembly {
let txPayloadLength := shr(224, mload(_l2TxnPtr))
_l2TxnPtr := add(_l2TxnPtr, 4)
_l2TxnPtr := add(_l2TxnPtr, txPayloadLength)
hash := keccak256(sub(_l2TxnPtr, txPayloadLength), txPayloadLength)
mstore(publicInputsPtr, hash)
publicInputsPtr := add(publicInputsPtr, 0x20)
}
}
}
// 4. append padding transaction to public inputs.
bytes32 txHashPadding = paddingTxHash;
for (uint256 i = numTransactionsInBatch; i < maxNumTxInBatch; i++) {
assembly {
mstore(publicInputsPtr, txHashPadding)
publicInputsPtr := add(publicInputsPtr, 0x20)
}
}
// 5. compute public input hash
bytes32 publicInputHash;
{
uint256 publicInputsSize = 32 * 3 + batch.blocks.length * 124 + 32 * maxNumTxInBatch;
assembly {
publicInputHash := keccak256(sub(publicInputsPtr, publicInputsSize), publicInputsSize)
}
}
return publicInputHash;
}
}