#' Plot output with cached images #' #' Renders a reactive plot, with plot images cached to disk. As of Shiny 1.6.0, #' this is a shortcut for using [bindCache()] with [renderPlot()]. #' #' `expr` is an expression that generates a plot, similar to that in #' `renderPlot`. Unlike with `renderPlot`, this expression does not #' take reactive dependencies. It is re-executed only when the cache key #' changes. #' #' `cacheKeyExpr` is an expression which, when evaluated, returns an object #' which will be serialized and hashed using the [rlang::hash()] #' function to generate a string that will be used as a cache key. This key is #' used to identify the contents of the plot: if the cache key is the same as a #' previous time, it assumes that the plot is the same and can be retrieved from #' the cache. #' #' This `cacheKeyExpr` is reactive, and so it will be re-evaluated when any #' upstream reactives are invalidated. This will also trigger re-execution of #' the plotting expression, `expr`. #' #' The key should consist of "normal" R objects, like vectors and lists. Lists #' should in turn contain other normal R objects. If the key contains #' environments, external pointers, or reference objects --- or even if it has #' such objects attached as attributes --- then it is possible that it will #' change unpredictably even when you do not expect it to. Additionally, because #' the entire key is serialized and hashed, if it contains a very large object #' --- a large data set, for example --- there may be a noticeable performance #' penalty. #' #' If you face these issues with the cache key, you can work around them by #' extracting out the important parts of the objects, and/or by converting them #' to normal R objects before returning them. Your expression could even #' serialize and hash that information in an efficient way and return a string, #' which will in turn be hashed (very quickly) by the #' [rlang::hash()] function. #' #' Internally, the result from `cacheKeyExpr` is combined with the name of #' the output (if you assign it to `output$plot1`, it will be combined #' with `"plot1"`) to form the actual key that is used. As a result, even #' if there are multiple plots that have the same `cacheKeyExpr`, they #' will not have cache key collisions. #' #' @section Interactive plots: #' #' `renderCachedPlot` can be used to create interactive plots. See #' [plotOutput()] for more information and examples. #' #' #' @inheritParams renderPlot #' @inheritParams bindCache #' @param cacheKeyExpr An expression that returns a cache key. This key should #' be a unique identifier for a plot: the assumption is that if the cache key #' is the same, then the plot will be the same. #' @param sizePolicy A function that takes two arguments, `width` and #' `height`, and returns a list with `width` and `height`. The #' purpose is to round the actual pixel dimensions from the browser to some #' other dimensions, so that this will not generate and cache images of every #' possible pixel dimension. See [sizeGrowthRatio()] for more #' information on the default sizing policy. #' @param res The resolution of the PNG, in pixels per inch. #' @param width,height not used. They are specified via the argument #' `sizePolicy`. #' #' @seealso See [renderPlot()] for the regular, non-cached version of this #' function. It can be used with [bindCache()] to get the same effect as #' `renderCachedPlot()`. For more about configuring caches, see #' [cachem::cache_mem()] and [cachem::cache_disk()]. #' #' #' @examples #' ## Only run examples in interactive R sessions #' if (interactive()) { #' #' # A basic example that uses the default app-scoped memory cache. #' # The cache will be shared among all simultaneous users of the application. #' shinyApp( #' fluidPage( #' sidebarLayout( #' sidebarPanel( #' sliderInput("n", "Number of points", 4, 32, value = 8, step = 4) #' ), #' mainPanel(plotOutput("plot")) #' ) #' ), #' function(input, output, session) { #' output$plot <- renderCachedPlot({ #' Sys.sleep(2) # Add an artificial delay #' seqn <- seq_len(input$n) #' plot(mtcars$wt[seqn], mtcars$mpg[seqn], #' xlim = range(mtcars$wt), ylim = range(mtcars$mpg)) #' }, #' cacheKeyExpr = { list(input$n) } #' ) #' } #' ) #' #' #' #' # An example uses a data object shared across sessions. mydata() is part of #' # the cache key, so when its value changes, plots that were previously #' # stored in the cache will no longer be used (unless mydata() changes back #' # to its previous value). #' mydata <- reactiveVal(data.frame(x = rnorm(400), y = rnorm(400))) #' #' ui <- fluidPage( #' sidebarLayout( #' sidebarPanel( #' sliderInput("n", "Number of points", 50, 400, 100, step = 50), #' actionButton("newdata", "New data") #' ), #' mainPanel( #' plotOutput("plot") #' ) #' ) #' ) #' #' server <- function(input, output, session) { #' observeEvent(input$newdata, { #' mydata(data.frame(x = rnorm(400), y = rnorm(400))) #' }) #' #' output$plot <- renderCachedPlot( #' { #' Sys.sleep(2) #' d <- mydata() #' seqn <- seq_len(input$n) #' plot(d$x[seqn], d$y[seqn], xlim = range(d$x), ylim = range(d$y)) #' }, #' cacheKeyExpr = { list(input$n, mydata()) }, #' ) #' } #' #' shinyApp(ui, server) #' #' #' # A basic application with two plots, where each plot in each session has #' # a separate cache. #' shinyApp( #' fluidPage( #' sidebarLayout( #' sidebarPanel( #' sliderInput("n", "Number of points", 4, 32, value = 8, step = 4) #' ), #' mainPanel( #' plotOutput("plot1"), #' plotOutput("plot2") #' ) #' ) #' ), #' function(input, output, session) { #' output$plot1 <- renderCachedPlot({ #' Sys.sleep(2) # Add an artificial delay #' seqn <- seq_len(input$n) #' plot(mtcars$wt[seqn], mtcars$mpg[seqn], #' xlim = range(mtcars$wt), ylim = range(mtcars$mpg)) #' }, #' cacheKeyExpr = { list(input$n) }, #' cache = cachem::cache_mem() #' ) #' output$plot2 <- renderCachedPlot({ #' Sys.sleep(2) # Add an artificial delay #' seqn <- seq_len(input$n) #' plot(mtcars$wt[seqn], mtcars$mpg[seqn], #' xlim = range(mtcars$wt), ylim = range(mtcars$mpg)) #' }, #' cacheKeyExpr = { list(input$n) }, #' cache = cachem::cache_mem() #' ) #' } #' ) #' #' } #' #' \dontrun{ #' # At the top of app.R, this set the application-scoped cache to be a memory #' # cache that is 20 MB in size, and where cached objects expire after one #' # hour. #' shinyOptions(cache = cachem::cache_mem(max_size = 20e6, max_age = 3600)) #' #' # At the top of app.R, this set the application-scoped cache to be a disk #' # cache that can be shared among multiple concurrent R processes, and is #' # deleted when the system reboots. #' shinyOptions(cache = cachem::cache_disk(file.path(dirname(tempdir()), "myapp-cache"))) #' #' # At the top of app.R, this set the application-scoped cache to be a disk #' # cache that can be shared among multiple concurrent R processes, and #' # persists on disk across reboots. #' shinyOptions(cache = cachem::cache_disk("./myapp-cache")) #' #' # At the top of the server function, this set the session-scoped cache to be #' # a memory cache that is 5 MB in size. #' server <- function(input, output, session) { #' shinyOptions(cache = cachem::cache_mem(max_size = 5e6)) #' #' output$plot <- renderCachedPlot( #' ..., #' cache = "session" #' ) #' } #' #' } #' @export renderCachedPlot <- function(expr, cacheKeyExpr, sizePolicy = sizeGrowthRatio(width = 400, height = 400, growthRate = 1.2), res = 72, cache = "app", ..., alt = "Plot object", outputArgs = list(), width = NULL, height = NULL ) { expr <- substitute(expr) if (!is_quosure(expr)) { expr <- new_quosure(expr, env = parent.frame()) } cacheKeyExpr <- substitute(cacheKeyExpr) if (!is_quosure(cacheKeyExpr)) { cacheKeyExpr <- new_quosure(cacheKeyExpr, env = parent.frame()) } if (!is.null(width) || !is.null(height)) { warning("Unused argument(s) 'width' and/or 'height'. ", "'sizePolicy' is used instead.") } inject( bindCache( renderPlot(!!expr, res = res, alt = alt, outputArgs = outputArgs, ...), !!cacheKeyExpr, sizePolicy = sizePolicy, cache = cache ) ) } #' Create a sizing function that grows at a given ratio #' #' Returns a function which takes a two-element vector representing an input #' width and height, and returns a two-element vector of width and height. The #' possible widths are the base width times the growthRate to any integer power. #' For example, with a base width of 500 and growth rate of 1.25, the possible #' widths include 320, 400, 500, 625, 782, and so on, both smaller and larger. #' Sizes are rounded up to the next pixel. Heights are computed the same way as #' widths. #' #' @param width,height Base width and height. #' @param growthRate Growth rate multiplier. #' #' @seealso This is to be used with [renderCachedPlot()]. #' #' @examples #' f <- sizeGrowthRatio(500, 500, 1.25) #' f(c(400, 400)) #' f(c(500, 500)) #' f(c(530, 550)) #' f(c(625, 700)) #' #' @export sizeGrowthRatio <- function(width = 400, height = 400, growthRate = 1.2) { round_dim_up <- function(x, base, rate) { power <- ceiling(log(x / base, rate)) ceiling(base * rate^power) } function(dims) { if (length(dims) != 2) { stop("dims must be a vector with two numbers, for width and height.") } c( round_dim_up(dims[1], width, growthRate), round_dim_up(dims[2], height, growthRate) ) } }