#' Plot Output #' #' Renders a reactive plot that is suitable for assigning to an \code{output} #' slot. #' #' The corresponding HTML output tag should be \code{div} or \code{img} and have #' the CSS class name \code{shiny-plot-output}. #' #' @seealso For the corresponding client-side output function, and example #' usage, see \code{\link{plotOutput}}. For more details on how the plots are #' generated, and how to control the output, see \code{\link{plotPNG}}. #' #' @param expr An expression that generates a plot. #' @param width,height The width/height of the rendered plot, in pixels; or #' \code{'auto'} to use the \code{offsetWidth}/\code{offsetHeight} of the HTML #' element that is bound to this plot. You can also pass in a function that #' returns the width/height in pixels or \code{'auto'}; in the body of the #' function you may reference reactive values and functions. When rendering an #' inline plot, you must provide numeric values (in pixels) to both #' \code{width} and \code{height}. #' @param res Resolution of resulting plot, in pixels per inch. This value is #' passed to \code{\link{png}}. Note that this affects the resolution of PNG #' rendering in R; it won't change the actual ppi of the browser. #' @param ... Arguments to be passed through to \code{\link[grDevices]{png}}. #' These can be used to set the width, height, background color, etc. #' @param env The environment in which to evaluate \code{expr}. #' @param quoted Is \code{expr} a quoted expression (with \code{quote()})? This #' is useful if you want to save an expression in a variable. #' @param func A function that generates a plot (deprecated; use \code{expr} #' instead). #' #' @export renderPlot <- function(expr, width='auto', height='auto', res=72, ..., env=parent.frame(), quoted=FALSE, func=NULL) { if (!is.null(func)) { shinyDeprecated(msg="renderPlot: argument 'func' is deprecated. Please use 'expr' instead.") } else { installExprFunction(expr, "func", env, quoted) } args <- list(...) if (is.function(width)) widthWrapper <- reactive({ width() }) else widthWrapper <- NULL if (is.function(height)) heightWrapper <- reactive({ height() }) else heightWrapper <- NULL # If renderPlot isn't going to adapt to the height of the div, then the # div needs to adapt to the height of renderPlot. By default, plotOutput # sets the height to 400px, so to make it adapt we need to override it # with NULL. outputFunc <- plotOutput if (!identical(height, 'auto')) formals(outputFunc)['height'] <- list(NULL) return(markRenderFunction(outputFunc, function(shinysession, name, ...) { if (!is.null(widthWrapper)) width <- widthWrapper() if (!is.null(heightWrapper)) height <- heightWrapper() # Note that these are reactive calls. A change to the width and height # will inherently cause a reactive plot to redraw (unless width and # height were explicitly specified). prefix <- 'output_' if (width == 'auto') width <- shinysession$clientData[[paste(prefix, name, '_width', sep='')]]; if (height == 'auto') height <- shinysession$clientData[[paste(prefix, name, '_height', sep='')]]; if (is.null(width) || is.null(height) || width <= 0 || height <= 0) return(NULL) # Resolution multiplier pixelratio <- shinysession$clientData$pixelratio if (is.null(pixelratio)) pixelratio <- 1 coordmap <- NULL plotFunc <- function() { # Actually perform the plotting result <- withVisible(func()) coordmap <<- NULL if (result$visible) { # Use capture.output to squelch printing to the actual console; we # are only interested in plot output # Special case for ggplot objects - need to capture coordmap if (inherits(result$value, "ggplot")) { capture.output(coordmap <<- getGgplotCoordmap(result$value, pixelratio)) } else { capture.output(print(result$value)) } } if (is.null(coordmap)) { coordmap <<- getPrevPlotCoordmap(width, height) } } outfile <- do.call(plotPNG, c(plotFunc, width=width*pixelratio, height=height*pixelratio, res=res*pixelratio, args)) on.exit(unlink(outfile)) # A list of attributes for the img res <- list( src=shinysession$fileUrl(name, outfile, contentType='image/png'), width=width, height=height, coordmap=coordmap ) # Get error message if present (from attribute on the coordmap) error <- attr(coordmap, "error", exact = TRUE) if (!is.null(error)) { res$error <- error } res })) } # The coordmap extraction functions below return something like the examples # below. For base graphics: # plot(mtcars$wt, mtcars$mpg) # str(getPrevPlotCoordmap(400, 300)) # List of 1 # $ :List of 4 # ..$ domain :List of 4 # .. ..$ left : num 1.36 # .. ..$ right : num 5.58 # .. ..$ bottom: num 9.46 # .. ..$ top : num 34.8 # ..$ range :List of 4 # .. ..$ left : num 50.4 # .. ..$ right : num 373 # .. ..$ bottom: num 199 # .. ..$ top : num 79.6 # ..$ log :List of 2 # .. ..$ x: NULL # .. ..$ y: NULL # ..$ mapping: Named list() # # For ggplot2, it might be something like: # p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() # str(getGgplotCoordmap(p, 1)) # List of 1 # $ :List of 10 # ..$ panel : int 1 # ..$ row : int 1 # ..$ col : int 1 # ..$ panel_vars: Named list() # ..$ scale_x : int 1 # ..$ scale_y : int 1 # ..$ log :List of 2 # .. ..$ x: NULL # .. ..$ y: NULL # ..$ domain :List of 4 # .. ..$ left : num 1.32 # .. ..$ right : num 5.62 # .. ..$ bottom: num 9.22 # .. ..$ top : num 35.1 # ..$ mapping :List of 2 # .. ..$ x: chr "wt" # .. ..$ y: chr "mpg" # ..$ range :List of 4 # .. ..$ left : num 40.8 # .. ..$ right : num 446 # .. ..$ bottom: num 263 # .. ..$ top : num 14.4 # # With a faceted ggplot2 plot, the outer list contains two objects, each of # which represents one panel. In this example, there is one panelvar, but there # can be up to two of them. # mtc <- mtcars # mtc$am <- factor(mtc$am) # p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() + facet_wrap(~ am) # str(getGgplotCoordmap(p, 1)) # List of 2 # $ :List of 10 # ..$ panel : int 1 # ..$ row : int 1 # ..$ col : int 1 # ..$ panel_vars:List of 1 # .. ..$ panelvar1: Factor w/ 2 levels "0","1": 1 # ..$ scale_x : int 1 # ..$ scale_y : int 1 # ..$ log :List of 2 # .. ..$ x: NULL # .. ..$ y: NULL # ..$ domain :List of 4 # .. ..$ left : num 1.32 # .. ..$ right : num 5.62 # .. ..$ bottom: num 9.22 # .. ..$ top : num 35.1 # ..$ mapping :List of 3 # .. ..$ x : chr "wt" # .. ..$ y : chr "mpg" # .. ..$ panelvar1: chr "am" # ..$ range :List of 4 # .. ..$ left : num 45.6 # .. ..$ right : num 317 # .. ..$ bottom: num 251 # .. ..$ top : num 35.7 # $ :List of 10 # ..$ panel : int 2 # ..$ row : int 1 # ..$ col : int 2 # ..$ panel_vars:List of 1 # .. ..$ panelvar1: Factor w/ 2 levels "0","1": 2 # ..$ scale_x : int 1 # ..$ scale_y : int 1 # ..$ log :List of 2 # .. ..$ x: NULL # .. ..$ y: NULL # ..$ domain :List of 4 # .. ..$ left : num 1.32 # .. ..$ right : num 5.62 # .. ..$ bottom: num 9.22 # .. ..$ top : num 35.1 # ..$ mapping :List of 3 # .. ..$ x : chr "wt" # .. ..$ y : chr "mpg" # .. ..$ panelvar1: chr "am" # ..$ range :List of 4 # .. ..$ left : num 322 # .. ..$ right : num 594 # .. ..$ bottom: num 251 # .. ..$ top : num 35.7 # Get a coordmap for the previous plot made with base graphics. # Requires width and height of output image, in pixels. # Must be called before the graphics device is closed. getPrevPlotCoordmap <- function(width, height) { usrCoords <- par('usr') usrBounds <- usrCoords if (par('xlog')) { usrBounds[c(1,2)] <- 10 ^ usrBounds[c(1,2)] } if (par('ylog')) { usrBounds[c(3,4)] <- 10 ^ usrBounds[c(3,4)] } # Wrapped in double list because other types of plots can have multiple panels. list(list( # Bounds of the plot area, in data space domain = list( left = usrCoords[1], right = usrCoords[2], bottom = usrCoords[3], top = usrCoords[4] ), # The bounds of the plot area, in DOM pixels range = list( left = grconvertX(usrBounds[1], 'user', 'nfc') * width, right = grconvertX(usrBounds[2], 'user', 'nfc') * width, bottom = (1-grconvertY(usrBounds[3], 'user', 'nfc')) * height - 1, top = (1-grconvertY(usrBounds[4], 'user', 'nfc')) * height - 1 ), log = list( x = if (par('xlog')) 10 else NULL, y = if (par('ylog')) 10 else NULL ), # We can't extract the original variable names from a base graphic. # `mapping` is an empty _named_ list, so that it is converted to an object # (not an array) in JSON. mapping = list(x = NULL)[0] )) } # Print a ggplot object and return a coordmap for it. getGgplotCoordmap <- function(p, pixelratio) { if (!inherits(p, "ggplot")) return(NULL) # A modified version of print.ggplot which returns the built ggplot object # as well as the gtable grob. print_ggplot <- function(x) { grid::grid.newpage() build <- ggplot2::ggplot_build(x) gtable <- ggplot2::ggplot_gtable(build) grid::grid.draw(gtable) list( build = build, gtable = gtable ) } # Given a built ggplot object, return x and y domains (data space coords) for # each panel. find_panel_info <- function(b) { layout <- b$panel$layout # Convert factor to numbers layout$PANEL <- as.integer(as.character(layout$PANEL)) # Names of facets facet <- b$plot$facet facet_vars <- NULL if (inherits(facet, "grid")) { facet_vars <- vapply(c(facet$cols, facet$rows), as.character, character(1)) } else if (inherits(facet, "wrap")) { facet_vars <- vapply(facet$facets, as.character, character(1)) } # Iterate over each row in the layout data frame lapply(seq_len(nrow(layout)), function(i) { # Slice out one row l <- layout[i, ] scale_x <- l$SCALE_X scale_y <- l$SCALE_Y mapping <- find_plot_mappings(b) # For each of the faceting variables, get the value of that variable in # the current panel. Default to empty _named_ list so that it's sent as a # JSON object, not array. panel_vars <- list(a = NULL)[0] for (i in seq_along(facet_vars)) { var_name <- facet_vars[[i]] vname <- paste0("panelvar", i) mapping[[vname]] <- var_name panel_vars[[vname]] <- l[[var_name]] } list( panel = l$PANEL, row = l$ROW, col = l$COL, panel_vars = panel_vars, scale_x = scale_x, scale_y = scale_x, log = check_log_scales(b, scale_x, scale_y), domain = find_panel_domain(b, l$PANEL, scale_x, scale_y), mapping = mapping ) }) } # Given a single range object (representing the data domain) from a built # ggplot object, return the domain. find_panel_domain <- function(b, panel_num, scalex_num = 1, scaley_num = 1) { range <- b$panel$ranges[[panel_num]] res <- list( left = range$x.range[1], right = range$x.range[2], bottom = range$y.range[1], top = range$y.range[2] ) # Check for reversed scales xscale <- b$panel$x_scales[[scalex_num]] yscale <- b$panel$y_scales[[scaley_num]] if (!is.null(xscale$trans) && xscale$trans$name == "reverse") { res$left <- -res$left res$right <- -res$right } if (!is.null(yscale$trans) && yscale$trans$name == "reverse") { res$top <- -res$top res$bottom <- -res$bottom } res } # Given built ggplot object, return object with the log base for x and y if # there are log scales or coord transforms. check_log_scales <- function(b, scalex_num = 1, scaley_num = 1) { # Given a vector of transformation names like c("log-10", "identity"), # return the first log base, like 10. If none are present, return NULL. extract_log_base <- function(names) { names <- names[grepl("^log-", names)] if (length(names) == 0) return(NULL) names <- names[1] as.numeric(sub("^log-", "", names)) } # Look for log scales and log coord transforms. People shouldn't use both. x_names <- character(0) y_names <- character(0) # Continuous scales have a trans; discrete ones don't if (!is.null(b$panel$x_scales[[scalex_num]]$trans)) x_names <- b$panel$x_scales[[scalex_num]]$trans$name if (!is.null(b$panel$y_scales[[scaley_num]]$trans)) y_names <- b$panel$y_scales[[scaley_num]]$trans$name coords <- b$plot$coordinates if (!is.null(coords$trans)) { if (!is.null(coords$trans$x)) x_names <- c(x_names, coords$trans$x$name) if (!is.null(coords$trans$y)) y_names <- c(y_names, coords$trans$y$name) } # Keep only scale/trans names that start with "log-" x_names <- x_names[grepl("^log-", x_names)] y_names <- y_names[grepl("^log-", y_names)] # Extract the log base from the trans name -- a string like "log-10". list( x = extract_log_base(x_names), y = extract_log_base(y_names) ) } # Given a built ggplot object, return a named list of variables mapped to x # and y. This function will be called for each panel, but in practice the # result is always the same across panels, so we'll cache the result. mappings_cache <- NULL find_plot_mappings <- function(b) { if (!is.null(mappings_cache)) return(mappings_cache) # lapply'ing as.character results in unexpected behavior for expressions # like `wt/2`. This works better. mappings <- as.list(as.character(b$plot$mapping)) # If x or y mapping is missing, look in each layer for mappings and return # the first one. missing_mappings <- setdiff(c("x", "y"), names(mappings)) if (length(missing_mappings) != 0) { # Grab mappings for each layer layer_mappings <- lapply(b$plot$layers, function(layer) { lapply(layer$mapping, as.character) }) # Get just the first x or y value in the combined list of plot and layer # mappings. mappings <- c(list(mappings), layer_mappings) mappings <- Reduce(x = mappings, init = list(x = NULL, y = NULL), function(init, m) { if (is.null(init$x) && !is.null(m$x)) init$x <- m$x if (is.null(init$y) && !is.null(m$y)) init$y <- m$y init } ) } mappings_cache <<- mappings mappings } # Given a gtable object, return the x and y ranges (in pixel dimensions) find_panel_ranges <- function(g, pixelratio) { # Given a vector of unit objects, return logical vector indicating which ones # are "null" units. These units use the remaining available width/height -- # that is, the space not occupied by elements that have an absolute size. is_null_unit <- function(x) { vapply(x, FUN.VALUE = logical(1), function(u) { isTRUE(attr(u, "unit", exact = TRUE) == "null") }) } # Convert a unit (or vector of units) to a numeric vector of pixel sizes h_px <- function(x) as.numeric(grid::convertHeight(x, "native")) w_px <- function(x) as.numeric(grid::convertWidth(x, "native")) # Given a vector of relative sizes (in grid units), and a function for # converting grid units to numeric pixels, return a numeric vector of # pixel sizes. find_px_sizes <- function(rel_sizes, unit_to_px) { # Total pixels (in height or width) total_px <- unit_to_px(grid::unit(1, "npc")) # Calculate size of all panel(s) together. Panels (and only panels) have # null size. null_idx <- is_null_unit(rel_sizes) # All the absolute heights. At this point, null heights are 0. We need to # calculate them separately and add them in later. px_sizes <- unit_to_px(rel_sizes) # Total size for panels is image size minus absolute (non-panel) elements panel_px_total <- total_px - sum(px_sizes) # Divide up the total panel size up into the panels (scaled by size) panel_sizes_rel <- as.numeric(rel_sizes[null_idx]) panel_sizes_rel <- panel_sizes_rel / sum(panel_sizes_rel) px_sizes[null_idx] <- panel_px_total * panel_sizes_rel abs(px_sizes) } px_heights <- find_px_sizes(g$heights, h_px) px_widths <- find_px_sizes(g$widths, w_px) # Convert to absolute pixel positions x_pos <- cumsum(px_widths) y_pos <- cumsum(px_heights) # Match up the pixel dimensions to panels layout <- g$layout # For panels: # * For facet_wrap, they'll be named "panel-1", "panel-2", etc. # * For no facet or facet_grid, they'll just be named "panel". For # facet_grid, we need to re-order the layout table. Assume that panel # numbers go from left to right, then next row. # Assign a number to each panel, corresponding to PANEl in the built ggplot # object. layout <- layout[grepl("^panel", layout$name), ] layout <- layout[order(layout$t, layout$l), ] layout$panel <- seq_len(nrow(layout)) # When using a HiDPI client on a Linux server, the pixel # dimensions are doubled, so we have to divide the dimensions by # `pixelratio`. When a HiDPI client is used on a Mac server (with # the quartz device), the pixel dimensions _aren't_ doubled, even though # the image has double size. In the latter case we don't have to scale the # numbers down. pix_ratio <- 1 if (!grepl("^quartz", names(dev.cur()))) { pix_ratio <- pixelratio } # Return list of lists, where each inner list has left, right, top, bottom # values for a panel lapply(seq_len(nrow(layout)), function(i) { p <- layout[i, , drop = FALSE] list( left = x_pos[p$l - 1] / pix_ratio, right = x_pos[p$r] / pix_ratio, bottom = y_pos[p$b] / pix_ratio, top = y_pos[p$t - 1] / pix_ratio ) }) } res <- print_ggplot(p) tryCatch({ # Get info from built ggplot object info <- find_panel_info(res$build) # Get ranges from gtable - it's possible for this to return more elements than # info, because it calculates positions even for panels that aren't present. # This can happen with facet_wrap. ranges <- find_panel_ranges(res$gtable, pixelratio) for (i in seq_along(info)) { info[[i]]$range <- ranges[[i]] } return(info) }, error = function(e) { # If there was an error extracting info from the ggplot object, just return # a list with the error message. return(structure(list(), error = e$message)) }) }