#' Plot Output #' #' Renders a reactive plot that is suitable for assigning to an \code{output} #' slot. #' #' The corresponding HTML output tag should be \code{div} or \code{img} and have #' the CSS class name \code{shiny-plot-output}. #' #' @seealso For the corresponding client-side output function, and example #' usage, see \code{\link{plotOutput}}. For more details on how the plots are #' generated, and how to control the output, see \code{\link{plotPNG}}. #' #' @param expr An expression that generates a plot. #' @param width,height The width/height of the rendered plot, in pixels; or #' \code{'auto'} to use the \code{offsetWidth}/\code{offsetHeight} of the HTML #' element that is bound to this plot. You can also pass in a function that #' returns the width/height in pixels or \code{'auto'}; in the body of the #' function you may reference reactive values and functions. When rendering an #' inline plot, you must provide numeric values (in pixels) to both #' \code{width} and \code{height}. #' @param res Resolution of resulting plot, in pixels per inch. This value is #' passed to \code{\link{png}}. Note that this affects the resolution of PNG #' rendering in R; it won't change the actual ppi of the browser. #' @param ... Arguments to be passed through to \code{\link[grDevices]{png}}. #' These can be used to set the width, height, background color, etc. #' @param env The environment in which to evaluate \code{expr}. #' @param quoted Is \code{expr} a quoted expression (with \code{quote()})? This #' is useful if you want to save an expression in a variable. #' @param func A function that generates a plot (deprecated; use \code{expr} #' instead). #' #' @export renderPlot <- function(expr, width='auto', height='auto', res=72, ..., env=parent.frame(), quoted=FALSE, func=NULL) { if (!is.null(func)) { shinyDeprecated(msg="renderPlot: argument 'func' is deprecated. Please use 'expr' instead.") } else { installExprFunction(expr, "func", env, quoted) } args <- list(...) if (is.function(width)) widthWrapper <- reactive({ width() }) else widthWrapper <- NULL if (is.function(height)) heightWrapper <- reactive({ height() }) else heightWrapper <- NULL # If renderPlot isn't going to adapt to the height of the div, then the # div needs to adapt to the height of renderPlot. By default, plotOutput # sets the height to 400px, so to make it adapt we need to override it # with NULL. outputFunc <- plotOutput if (!identical(height, 'auto')) formals(outputFunc)['height'] <- list(NULL) return(markRenderFunction(outputFunc, function(shinysession, name, ...) { if (!is.null(widthWrapper)) width <- widthWrapper() if (!is.null(heightWrapper)) height <- heightWrapper() # Note that these are reactive calls. A change to the width and height # will inherently cause a reactive plot to redraw (unless width and # height were explicitly specified). prefix <- 'output_' if (width == 'auto') width <- shinysession$clientData[[paste(prefix, name, '_width', sep='')]]; if (height == 'auto') height <- shinysession$clientData[[paste(prefix, name, '_height', sep='')]]; if (is.null(width) || is.null(height) || width <= 0 || height <= 0) return(NULL) # Resolution multiplier pixelratio <- shinysession$clientData$pixelratio if (is.null(pixelratio)) pixelratio <- 1 coordmap <- NULL plotFunc <- function() { # Actually perform the plotting result <- withVisible(func()) coordmap <<- NULL if (result$visible) { # Use capture.output to squelch printing to the actual console; we # are only interested in plot output # Special case for ggplot objects - need to capture coordmap if (inherits(result$value, "ggplot")) { capture.output(coordmap <<- getGgplotCoordmap(result$value, pixelratio)) } else { capture.output(print(result$value)) } } if (is.null(coordmap)) { coordmap <<- getPrevPlotCoordmap(width, height) } } outfile <- do.call(plotPNG, c(plotFunc, width=width*pixelratio, height=height*pixelratio, res=res*pixelratio, args)) on.exit(unlink(outfile)) # Return a list of attributes for the img return(list( src=shinysession$fileUrl(name, outfile, contentType='image/png'), width=width, height=height, coordmap=coordmap )) })) } # Get a coordmap for the previous plot made with base graphics. # Requires width and height of output image, in pixels. # Must be called before the graphics device is closed. getPrevPlotCoordmap <- function(width, height) { usrCoords <- par('usr') usrBounds <- usrCoords if (par('xlog')) { usrBounds[c(1,2)] <- 10 ^ usrBounds[c(1,2)] } if (par('ylog')) { usrBounds[c(3,4)] <- 10 ^ usrBounds[c(3,4)] } # Wrapped in double list because other types of plots can have multiple panels. list(list( # Bounds of the plot area, in data space domain = list( left = usrCoords[1], right = usrCoords[2], bottom = usrCoords[3], top = usrCoords[4] ), # The bounds of the plot area, in DOM pixels range = list( left = grconvertX(usrBounds[1], 'user', 'nfc') * width - 1, right = grconvertX(usrBounds[2], 'user', 'nfc') * width - 1, bottom = (1-grconvertY(usrBounds[3], 'user', 'nfc')) * height - 1, top = (1-grconvertY(usrBounds[4], 'user', 'nfc')) * height - 1 ), log = list( x = if (par('xlog')) 10 else NULL, y = if (par('ylog')) 10 else NULL )) ) } # Print a ggplot object and return a coordmap for it. getGgplotCoordmap <- function(p, pixelratio) { if (!inherits(p, "ggplot")) return(NULL) # A modified version of print.ggplot which returns the built ggplot object # as well as the gtable grob. print_ggplot <- function(x) { grid::grid.newpage() build <- ggplot2::ggplot_build(x) gtable <- ggplot2::ggplot_gtable(build) grid::grid.draw(gtable) list( build = build, gtable = gtable ) } # Given a built ggplot object and corresponding gtable, return x and y domains # (data space coords) and ranges (pixel coords). find_panel_info <- function(b) { layout <- b$panel$layout # Convert factor to numbers layout$PANEL <- as.integer(as.character(layout$PANEL)) # Names of facets facet <- b$plot$facet facet_vars <- NULL if (inherits(facet, "grid")) { facet_vars <- vapply(c(facet$cols, facet$rows), as.character, character(1)) } else if (inherits(facet, "wrap")) { facet_vars <- vapply(b$plot$facet$facets, as.character, character(1)) } # Iterate over each row in the layout data frame lapply(seq_len(nrow(layout)), function(i) { # Slice out one row l <- layout[i, ] scale_x <- l$SCALE_X scale_y <- l$SCALE_Y vars <- lapply(facet_vars, function(var) { list(name = var, value = l[[var]]) }) list( panel = l$PANEL, row = l$ROW, col = l$COL, vars = vars, scale_x = scale_x, scale_y = scale_x, log = check_log_scales(b, scale_x, scale_y), domain = find_panel_domain(b, l$PANEL, scale_x, scale_y) ) }) } # Given a single range object (representing the data domain) from a built # ggplot object, return the domain. find_panel_domain <- function(b, panel_num, scalex_num = 1, scaley_num = 1) { range <- b$panel$ranges[[panel_num]] res <- list( left = range$x.range[1], right = range$x.range[2], bottom = range$y.range[1], top = range$y.range[2] ) # Check for reversed scales xscale <- b$panel$x_scales[[scalex_num]] yscale <- b$panel$y_scales[[scaley_num]] if (!is.null(xscale$trans) && xscale$trans$name == "reverse") { res$left <- -res$left res$right <- -res$right } if (!is.null(yscale$trans) && yscale$trans$name == "reverse") { res$top <- -res$top res$bottom <- -res$bottom } res } # Given built ggplot object, return object with the log base for x and y if # there are log scales or coord transforms. check_log_scales <- function(b, scalex_num = 1, scaley_num = 1) { # Given a vector of transformation names like c("log-10", "identity"), # return the first log base, like 10. If none are present, return NULL. extract_log_base <- function(names) { names <- names[grepl("^log-", names)] if (length(names) == 0) return(NULL) names <- names[1] as.numeric(sub("^log-", "", names)) } # Look for log scales and log coord transforms. People shouldn't use both. x_names <- character(0) y_names <- character(0) # Continuous scales have a trans; discrete ones don't if (!is.null(b$panel$x_scales[[scalex_num]]$trans)) x_names <- b$panel$x_scales[[scalex_num]]$trans$name if (!is.null(b$panel$y_scales[[scaley_num]]$trans)) y_names <- b$panel$y_scales[[scaley_num]]$trans$name coords <- b$plot$coordinates if (!is.null(coords$trans)) { if (!is.null(coords$trans$x)) x_names <- c(x_names, coords$trans$x$name) if (!is.null(coords$trans$y)) y_names <- c(y_names, coords$trans$y$name) } # Keep only scale/trans names that start with "log-" x_names <- x_names[grepl("^log-", x_names)] y_names <- y_names[grepl("^log-", y_names)] # Extract the log base from the trans name -- a string like "log-10". list( x = extract_log_base(x_names), y = extract_log_base(y_names) ) } # Given a gtable object, return the x and y ranges (in pixel dimensions) find_panel_ranges <- function(g, pixelratio) { # Given a vector of unit objects, return logical vector indicating which ones # are "null" units. These units use the remaining available width/height -- # that is, the space not occupied by elements that have an absolute size. is_null_unit <- function(x) { vapply(x, FUN.VALUE = logical(1), function(u) { isTRUE(attr(u, "unit", exact = TRUE) == "null") }) } # Convert a unit (or vector of units) to a numeric vector of pixel sizes h_px <- function(x) as.numeric(grid::convertHeight(x, "native")) w_px <- function(x) as.numeric(grid::convertWidth(x, "native")) # Given a vector of relative sizes (in grid units), and a function for # converting grid units to numeric pixels, return a numeric vector of # pixel sizes. find_px_sizes <- function(rel_sizes, unit_to_px) { # Total pixels (in height or width) total_px <- unit_to_px(grid::unit(1, "npc")) # Calculate size of all panel(s) together. Panels (and only panels) have # null size. null_idx <- is_null_unit(rel_sizes) # All the absolute heights. At this point, null heights are 0. We need to # calculate them separately and add them in later. px_sizes <- unit_to_px(rel_sizes) # Total size for panels is image size minus absolute (non-panel) elements panel_px_total <- total_px - sum(px_sizes) # Divide up the total panel size up into the panels (scaled by size) panel_sizes_rel <- as.numeric(rel_sizes[null_idx]) panel_sizes_rel <- panel_sizes_rel / sum(panel_sizes_rel) px_sizes[null_idx] <- panel_px_total * panel_sizes_rel abs(px_sizes) } px_heights <- find_px_sizes(g$heights, h_px) px_widths <- find_px_sizes(g$widths, w_px) # Convert to absolute pixel positions x_pos <- cumsum(px_widths) y_pos <- cumsum(px_heights) # Match up the pixel dimensions to panels layout <- g$layout # For panels: # * For facet_wrap, they'll be named "panel-1", "panel-2", etc. # * For no facet or facet_grid, they'll just be named "panel". For # facet_grid, we need to re-order the layout table. Assume that panel # numbers go from left to right, then next row. # Assign a number to each panel, corresponding to PANEl in the built ggplot # object. layout <- layout[grepl("^panel", layout$name), ] layout <- layout[order(layout$t, layout$l), ] layout$panel <- seq_len(nrow(layout)) # When using a HiDPI client on a Linux server, the pixel # dimensions are doubled, so we have to divide the dimensions by # `pixelratio`. When a HiDPI client is used on a Mac server (with # the quartz device), the pixel dimensions _aren't_ doubled, even though # the image has double size. In the latter case we don't have to scale the # numbers down. pix_ratio <- 1 if (!grepl("^quartz", names(dev.cur()))) { pix_ratio <- pixelratio } # Return list of lists, where each inner list has left, right, top, bottom # values for a panel lapply(seq_len(nrow(layout)), function(i) { p <- layout[i, , drop = FALSE] list( left = x_pos[p$l - 1] / pix_ratio, right = x_pos[p$r] / pix_ratio, bottom = y_pos[p$b] / pix_ratio, top = y_pos[p$t - 1] / pix_ratio ) }) } res <- print_ggplot(p) # Get info from built ggplot object info <- find_panel_info(res$build) # Get ranges from gtable - it's possible for this to return more elements than # info, because it calculates positions even for panels that aren't present. # This can happen with facet_wrap. ranges <- find_panel_ranges(res$gtable, pixelratio) for (i in seq_along(info)) { info[[i]]$range <- ranges[[i]] } info }