Files
shiny/R/render-plot.R
Joe Cheng 5070b63d5b Partial fix of debugger breakage
There are two problems I'm trying to solve here.

1) Somewhere along the way, exprToFunction gained a hardcoded
   assumption that two stack frames up is a variable "expr",
   meaning anything that called installExprFunction had to have
   the first argument be exactly "expr". I think I got this
   fixed, now the only assumption made by both installExprFunc
   and exprToFunc is if they are called with quoted = FALSE,
   then the caller is merely passing through code that originated
   exactly one more level up the stack frame. If the code is
   less than one level up, i.e. an end user is directly passing
   code into installExprFunction or exprToFunction, then it won't
   work; and if the code is more than one level up (someone is
   passing code into function A which passes through to function
   B which calls installExprFunction, with quoted = FALSE) then
   it also won't work.

2) registerDebugHook calls were broken in various places by the
   name/envir registered with the hook being different than the
   name/envir through which the function was actually called.
   This generally seems fixable by moving the registerDebugHook
   call closer to the name/envir that will ultimately be called
   (e.g. call registerDebugHook directly from wrapFunctionLabel).

There still seems to be a problem here in that breakpoints in
RStudio are hit but then the IDE automatically runs "n" multiple
times. Also the unit tests don't currently pass, I haven't
investigated that yet.
2016-02-17 11:45:01 -06:00

618 lines
21 KiB
R

#' Plot Output
#'
#' Renders a reactive plot that is suitable for assigning to an \code{output}
#' slot.
#'
#' The corresponding HTML output tag should be \code{div} or \code{img} and have
#' the CSS class name \code{shiny-plot-output}.
#'
#' @section Interactive plots:
#'
#' With ggplot2 graphics, the code in \code{renderPlot} should return a ggplot
#' object; if instead the code prints the ggplot2 object with something like
#' \code{print(p)}, then the coordinates for interactive graphics will not be
#' properly scaled to the data space.
#'
#' See \code{\link{plotOutput}} for more information about interactive plots.
#'
#' @seealso For the corresponding client-side output function, and example
#' usage, see \code{\link{plotOutput}}. For more details on how the plots are
#' generated, and how to control the output, see \code{\link{plotPNG}}.
#'
#' @param expr An expression that generates a plot.
#' @param width,height The width/height of the rendered plot, in pixels; or
#' \code{'auto'} to use the \code{offsetWidth}/\code{offsetHeight} of the HTML
#' element that is bound to this plot. You can also pass in a function that
#' returns the width/height in pixels or \code{'auto'}; in the body of the
#' function you may reference reactive values and functions. When rendering an
#' inline plot, you must provide numeric values (in pixels) to both
#' \code{width} and \code{height}.
#' @param res Resolution of resulting plot, in pixels per inch. This value is
#' passed to \code{\link{png}}. Note that this affects the resolution of PNG
#' rendering in R; it won't change the actual ppi of the browser.
#' @param ... Arguments to be passed through to \code{\link[grDevices]{png}}.
#' These can be used to set the width, height, background color, etc.
#' @param env The environment in which to evaluate \code{expr}.
#' @param quoted Is \code{expr} a quoted expression (with \code{quote()})? This
#' is useful if you want to save an expression in a variable.
#' @param func A function that generates a plot (deprecated; use \code{expr}
#' instead).
#'
#' @export
renderPlot <- function(plotExpr, width='auto', height='auto', res=72, ...,
env=parent.frame(), quoted=FALSE, func=NULL) {
# This ..stacktraceon is matched by a ..stacktraceoff.. when plotFunc
# is called
installExprFunction(plotExpr, "func", env, quoted, ..stacktraceon = TRUE)
args <- list(...)
if (is.function(width))
widthWrapper <- reactive({ width() })
else
widthWrapper <- NULL
if (is.function(height))
heightWrapper <- reactive({ height() })
else
heightWrapper <- NULL
# If renderPlot isn't going to adapt to the height of the div, then the
# div needs to adapt to the height of renderPlot. By default, plotOutput
# sets the height to 400px, so to make it adapt we need to override it
# with NULL.
outputFunc <- plotOutput
if (!identical(height, 'auto')) formals(outputFunc)['height'] <- list(NULL)
return(markRenderFunction(outputFunc, function(shinysession, name, ...) {
if (!is.null(widthWrapper))
width <- widthWrapper()
if (!is.null(heightWrapper))
height <- heightWrapper()
# Note that these are reactive calls. A change to the width and height
# will inherently cause a reactive plot to redraw (unless width and
# height were explicitly specified).
prefix <- 'output_'
if (width == 'auto')
width <- shinysession$clientData[[paste(prefix, name, '_width', sep='')]];
if (height == 'auto')
height <- shinysession$clientData[[paste(prefix, name, '_height', sep='')]];
if (is.null(width) || is.null(height) || width <= 0 || height <= 0)
return(NULL)
# Resolution multiplier
pixelratio <- shinysession$clientData$pixelratio
if (is.null(pixelratio))
pixelratio <- 1
coordmap <- NULL
plotFunc <- function() {
# Actually perform the plotting
result <- withVisible(func())
coordmap <<- NULL
if (result$visible) {
# Use capture.output to squelch printing to the actual console; we
# are only interested in plot output
# Special case for ggplot objects - need to capture coordmap
if (inherits(result$value, "ggplot")) {
utils::capture.output(coordmap <<- getGgplotCoordmap(result$value, pixelratio))
} else {
# This ..stacktraceon.. negates the ..stacktraceoff.. that wraps the
# call to plotFunc
utils::capture.output(..stacktraceon..(print(result$value)))
}
}
if (is.null(coordmap)) {
coordmap <<- getPrevPlotCoordmap(width, height)
}
}
# This ..stacktraceoff.. is matched by the `func` function's
# wrapFunctionLabel(..stacktraceon=TRUE) call near the beginning of
# renderPlot, and by the ..stacktraceon.. in plotFunc where ggplot objects
# are printed
outfile <- ..stacktraceoff..(
do.call(plotPNG, c(plotFunc, width=width*pixelratio,
height=height*pixelratio, res=res*pixelratio, args))
)
on.exit(unlink(outfile))
# A list of attributes for the img
res <- list(
src=shinysession$fileUrl(name, outfile, contentType='image/png'),
width=width, height=height, coordmap=coordmap
)
# Get error message if present (from attribute on the coordmap)
error <- attr(coordmap, "error", exact = TRUE)
if (!is.null(error)) {
res$error <- error
}
res
}))
}
# The coordmap extraction functions below return something like the examples
# below. For base graphics:
# plot(mtcars$wt, mtcars$mpg)
# str(getPrevPlotCoordmap(400, 300))
# List of 1
# $ :List of 4
# ..$ domain :List of 4
# .. ..$ left : num 1.36
# .. ..$ right : num 5.58
# .. ..$ bottom: num 9.46
# .. ..$ top : num 34.8
# ..$ range :List of 4
# .. ..$ left : num 50.4
# .. ..$ right : num 373
# .. ..$ bottom: num 199
# .. ..$ top : num 79.6
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ mapping: Named list()
#
# For ggplot2, it might be something like:
# p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
# str(getGgplotCoordmap(p, 1))
# List of 1
# $ :List of 10
# ..$ panel : int 1
# ..$ row : int 1
# ..$ col : int 1
# ..$ panel_vars: Named list()
# ..$ scale_x : int 1
# ..$ scale_y : int 1
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ domain :List of 4
# .. ..$ left : num 1.32
# .. ..$ right : num 5.62
# .. ..$ bottom: num 9.22
# .. ..$ top : num 35.1
# ..$ mapping :List of 2
# .. ..$ x: chr "wt"
# .. ..$ y: chr "mpg"
# ..$ range :List of 4
# .. ..$ left : num 40.8
# .. ..$ right : num 446
# .. ..$ bottom: num 263
# .. ..$ top : num 14.4
#
# With a faceted ggplot2 plot, the outer list contains two objects, each of
# which represents one panel. In this example, there is one panelvar, but there
# can be up to two of them.
# mtc <- mtcars
# mtc$am <- factor(mtc$am)
# p <- ggplot(mtcars, aes(wt, mpg)) + geom_point() + facet_wrap(~ am)
# str(getGgplotCoordmap(p, 1))
# List of 2
# $ :List of 10
# ..$ panel : int 1
# ..$ row : int 1
# ..$ col : int 1
# ..$ panel_vars:List of 1
# .. ..$ panelvar1: Factor w/ 2 levels "0","1": 1
# ..$ scale_x : int 1
# ..$ scale_y : int 1
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ domain :List of 4
# .. ..$ left : num 1.32
# .. ..$ right : num 5.62
# .. ..$ bottom: num 9.22
# .. ..$ top : num 35.1
# ..$ mapping :List of 3
# .. ..$ x : chr "wt"
# .. ..$ y : chr "mpg"
# .. ..$ panelvar1: chr "am"
# ..$ range :List of 4
# .. ..$ left : num 45.6
# .. ..$ right : num 317
# .. ..$ bottom: num 251
# .. ..$ top : num 35.7
# $ :List of 10
# ..$ panel : int 2
# ..$ row : int 1
# ..$ col : int 2
# ..$ panel_vars:List of 1
# .. ..$ panelvar1: Factor w/ 2 levels "0","1": 2
# ..$ scale_x : int 1
# ..$ scale_y : int 1
# ..$ log :List of 2
# .. ..$ x: NULL
# .. ..$ y: NULL
# ..$ domain :List of 4
# .. ..$ left : num 1.32
# .. ..$ right : num 5.62
# .. ..$ bottom: num 9.22
# .. ..$ top : num 35.1
# ..$ mapping :List of 3
# .. ..$ x : chr "wt"
# .. ..$ y : chr "mpg"
# .. ..$ panelvar1: chr "am"
# ..$ range :List of 4
# .. ..$ left : num 322
# .. ..$ right : num 594
# .. ..$ bottom: num 251
# .. ..$ top : num 35.7
# Get a coordmap for the previous plot made with base graphics.
# Requires width and height of output image, in pixels.
# Must be called before the graphics device is closed.
getPrevPlotCoordmap <- function(width, height) {
usrCoords <- graphics::par('usr')
usrBounds <- usrCoords
if (graphics::par('xlog')) {
usrBounds[c(1,2)] <- 10 ^ usrBounds[c(1,2)]
}
if (graphics::par('ylog')) {
usrBounds[c(3,4)] <- 10 ^ usrBounds[c(3,4)]
}
# Wrapped in double list because other types of plots can have multiple panels.
list(list(
# Bounds of the plot area, in data space
domain = list(
left = usrCoords[1],
right = usrCoords[2],
bottom = usrCoords[3],
top = usrCoords[4]
),
# The bounds of the plot area, in DOM pixels
range = list(
left = graphics::grconvertX(usrBounds[1], 'user', 'nfc') * width,
right = graphics::grconvertX(usrBounds[2], 'user', 'nfc') * width,
bottom = (1-graphics::grconvertY(usrBounds[3], 'user', 'nfc')) * height - 1,
top = (1-graphics::grconvertY(usrBounds[4], 'user', 'nfc')) * height - 1
),
log = list(
x = if (graphics::par('xlog')) 10 else NULL,
y = if (graphics::par('ylog')) 10 else NULL
),
# We can't extract the original variable names from a base graphic.
# `mapping` is an empty _named_ list, so that it is converted to an object
# (not an array) in JSON.
mapping = list(x = NULL)[0]
))
}
# Print a ggplot object and return a coordmap for it.
getGgplotCoordmap <- function(p, pixelratio) {
if (!inherits(p, "ggplot"))
return(NULL)
# A modified version of print.ggplot which returns the built ggplot object as
# well as the gtable grob. This overrides the ggplot::print.ggplot method, but
# only within the context of getGgplotCoordmap. The reason this needs to be an
# (pseudo) S3 method is so that, if an object has a class in addition to
# ggplot, and there's a print method for that class, that we won't override
# that method.
# https://github.com/rstudio/shiny/issues/841
print.ggplot <- function(x) {
grid::grid.newpage()
build <- ggplot2::ggplot_build(x)
gtable <- ggplot2::ggplot_gtable(build)
grid::grid.draw(gtable)
list(
build = build,
gtable = gtable
)
}
# Given the name of a generic function and an object, return the class name
# for the method that would be used on the object.
which_method <- function(generic, x) {
classes <- class(x)
method_names <- paste(generic, classes, sep = ".")
idx <- which(method_names %in% utils::methods(generic))
if (length(idx) == 0)
return(NULL)
# Return name of first class with matching method
classes[idx[1]]
}
# Given a built ggplot object, return x and y domains (data space coords) for
# each panel.
find_panel_info <- function(b) {
layout <- b$panel$layout
# Convert factor to numbers
layout$PANEL <- as.integer(as.character(layout$PANEL))
# Names of facets
facet <- b$plot$facet
facet_vars <- NULL
if (inherits(facet, "grid")) {
facet_vars <- vapply(c(facet$cols, facet$rows), as.character, character(1))
} else if (inherits(facet, "wrap")) {
facet_vars <- vapply(facet$facets, as.character, character(1))
}
# Iterate over each row in the layout data frame
lapply(seq_len(nrow(layout)), function(i) {
# Slice out one row
l <- layout[i, ]
scale_x <- l$SCALE_X
scale_y <- l$SCALE_Y
mapping <- find_plot_mappings(b)
# For each of the faceting variables, get the value of that variable in
# the current panel. Default to empty _named_ list so that it's sent as a
# JSON object, not array.
panel_vars <- list(a = NULL)[0]
for (i in seq_along(facet_vars)) {
var_name <- facet_vars[[i]]
vname <- paste0("panelvar", i)
mapping[[vname]] <- var_name
panel_vars[[vname]] <- l[[var_name]]
}
list(
panel = l$PANEL,
row = l$ROW,
col = l$COL,
panel_vars = panel_vars,
scale_x = scale_x,
scale_y = scale_x,
log = check_log_scales(b, scale_x, scale_y),
domain = find_panel_domain(b, l$PANEL, scale_x, scale_y),
mapping = mapping
)
})
}
# Given a single range object (representing the data domain) from a built
# ggplot object, return the domain.
find_panel_domain <- function(b, panel_num, scalex_num = 1, scaley_num = 1) {
range <- b$panel$ranges[[panel_num]]
res <- list(
left = range$x.range[1],
right = range$x.range[2],
bottom = range$y.range[1],
top = range$y.range[2]
)
# Check for reversed scales
xscale <- b$panel$x_scales[[scalex_num]]
yscale <- b$panel$y_scales[[scaley_num]]
if (!is.null(xscale$trans) && xscale$trans$name == "reverse") {
res$left <- -res$left
res$right <- -res$right
}
if (!is.null(yscale$trans) && yscale$trans$name == "reverse") {
res$top <- -res$top
res$bottom <- -res$bottom
}
res
}
# Given built ggplot object, return object with the log base for x and y if
# there are log scales or coord transforms.
check_log_scales <- function(b, scalex_num = 1, scaley_num = 1) {
# Given a vector of transformation names like c("log-10", "identity"),
# return the first log base, like 10. If none are present, return NULL.
extract_log_base <- function(names) {
names <- names[grepl("^log-", names)]
if (length(names) == 0)
return(NULL)
names <- names[1]
as.numeric(sub("^log-", "", names))
}
# Look for log scales and log coord transforms. People shouldn't use both.
x_names <- character(0)
y_names <- character(0)
# Continuous scales have a trans; discrete ones don't
if (!is.null(b$panel$x_scales[[scalex_num]]$trans))
x_names <- b$panel$x_scales[[scalex_num]]$trans$name
if (!is.null(b$panel$y_scales[[scaley_num]]$trans))
y_names <- b$panel$y_scales[[scaley_num]]$trans$name
coords <- b$plot$coordinates
if (!is.null(coords$trans)) {
if (!is.null(coords$trans$x))
x_names <- c(x_names, coords$trans$x$name)
if (!is.null(coords$trans$y))
y_names <- c(y_names, coords$trans$y$name)
}
# Keep only scale/trans names that start with "log-"
x_names <- x_names[grepl("^log-", x_names)]
y_names <- y_names[grepl("^log-", y_names)]
# Extract the log base from the trans name -- a string like "log-10".
list(
x = extract_log_base(x_names),
y = extract_log_base(y_names)
)
}
# Given a built ggplot object, return a named list of variables mapped to x
# and y. This function will be called for each panel, but in practice the
# result is always the same across panels, so we'll cache the result.
mappings_cache <- NULL
find_plot_mappings <- function(b) {
if (!is.null(mappings_cache))
return(mappings_cache)
# lapply'ing as.character results in unexpected behavior for expressions
# like `wt/2`. This works better.
mappings <- as.list(as.character(b$plot$mapping))
# If x or y mapping is missing, look in each layer for mappings and return
# the first one.
missing_mappings <- setdiff(c("x", "y"), names(mappings))
if (length(missing_mappings) != 0) {
# Grab mappings for each layer
layer_mappings <- lapply(b$plot$layers, function(layer) {
lapply(layer$mapping, as.character)
})
# Get just the first x or y value in the combined list of plot and layer
# mappings.
mappings <- c(list(mappings), layer_mappings)
mappings <- Reduce(x = mappings, init = list(x = NULL, y = NULL),
function(init, m) {
if (is.null(init$x) && !is.null(m$x)) init$x <- m$x
if (is.null(init$y) && !is.null(m$y)) init$y <- m$y
init
}
)
}
mappings_cache <<- mappings
mappings
}
# Given a gtable object, return the x and y ranges (in pixel dimensions)
find_panel_ranges <- function(g, pixelratio) {
# Given a vector of unit objects, return logical vector indicating which ones
# are "null" units. These units use the remaining available width/height --
# that is, the space not occupied by elements that have an absolute size.
is_null_unit <- function(x) {
# A vector of units can be either a list of individual units (a unit.list
# object), each with their own set of attributes, or an atomic vector with
# one set of attributes. ggplot2 switched from the former (in version
# 1.0.1) to the latter. We need to make sure that we get the correct
# result in both cases.
if (inherits(x, "unit.list")) {
# For ggplot2 <= 1.0.1
vapply(x, FUN.VALUE = logical(1), function(u) {
isTRUE(attr(u, "unit", exact = TRUE) == "null")
})
} else {
# For later versions of ggplot2
attr(x, "unit", exact = TRUE) == "null"
}
}
# Convert a unit (or vector of units) to a numeric vector of pixel sizes
h_px <- function(x) as.numeric(grid::convertHeight(x, "native"))
w_px <- function(x) as.numeric(grid::convertWidth(x, "native"))
# Given a vector of relative sizes (in grid units), and a function for
# converting grid units to numeric pixels, return a numeric vector of
# pixel sizes.
find_px_sizes <- function(rel_sizes, unit_to_px) {
# Total pixels (in height or width)
total_px <- unit_to_px(grid::unit(1, "npc"))
# Calculate size of all panel(s) together. Panels (and only panels) have
# null size.
null_idx <- is_null_unit(rel_sizes)
# All the absolute heights. At this point, null heights are 0. We need to
# calculate them separately and add them in later.
px_sizes <- unit_to_px(rel_sizes)
# Total size for panels is image size minus absolute (non-panel) elements
panel_px_total <- total_px - sum(px_sizes)
# Divide up the total panel size up into the panels (scaled by size)
panel_sizes_rel <- as.numeric(rel_sizes[null_idx])
panel_sizes_rel <- panel_sizes_rel / sum(panel_sizes_rel)
px_sizes[null_idx] <- panel_px_total * panel_sizes_rel
abs(px_sizes)
}
px_heights <- find_px_sizes(g$heights, h_px)
px_widths <- find_px_sizes(g$widths, w_px)
# Convert to absolute pixel positions
x_pos <- cumsum(px_widths)
y_pos <- cumsum(px_heights)
# Match up the pixel dimensions to panels
layout <- g$layout
# For panels:
# * For facet_wrap, they'll be named "panel-1", "panel-2", etc.
# * For no facet or facet_grid, they'll just be named "panel". For
# facet_grid, we need to re-order the layout table. Assume that panel
# numbers go from left to right, then next row.
# Assign a number to each panel, corresponding to PANEl in the built ggplot
# object.
layout <- layout[grepl("^panel", layout$name), ]
layout <- layout[order(layout$t, layout$l), ]
layout$panel <- seq_len(nrow(layout))
# When using a HiDPI client on a Linux server, the pixel
# dimensions are doubled, so we have to divide the dimensions by
# `pixelratio`. When a HiDPI client is used on a Mac server (with
# the quartz device), the pixel dimensions _aren't_ doubled, even though
# the image has double size. In the latter case we don't have to scale the
# numbers down.
pix_ratio <- 1
if (!grepl("^quartz", names(grDevices::dev.cur()))) {
pix_ratio <- pixelratio
}
# Return list of lists, where each inner list has left, right, top, bottom
# values for a panel
lapply(seq_len(nrow(layout)), function(i) {
p <- layout[i, , drop = FALSE]
list(
left = x_pos[p$l - 1] / pix_ratio,
right = x_pos[p$r] / pix_ratio,
bottom = y_pos[p$b] / pix_ratio,
top = y_pos[p$t - 1] / pix_ratio
)
})
}
# If print(p) gets dispatched to print.ggplot(p), attempt to extract coordmap.
# If dispatched to another method, just print the object and don't attempt to
# extract the coordmap. This can happen if there's another print method that
# takes precedence.
if (identical(which_method("print", p), "ggplot")) {
res <- print(p)
tryCatch({
# Get info from built ggplot object
info <- find_panel_info(res$build)
# Get ranges from gtable - it's possible for this to return more elements than
# info, because it calculates positions even for panels that aren't present.
# This can happen with facet_wrap.
ranges <- find_panel_ranges(res$gtable, pixelratio)
for (i in seq_along(info)) {
info[[i]]$range <- ranges[[i]]
}
return(info)
}, error = function(e) {
# If there was an error extracting info from the ggplot object, just return
# a list with the error message.
return(structure(list(), error = e$message))
})
} else {
print(p)
return(list())
}
}