feat(docs): added vector search (#2583)

* feat(docs): added vector search

* ack comments
This commit is contained in:
Waleed
2025-12-25 11:00:57 -08:00
committed by GitHub
parent f604ca39a5
commit d79696beae
5 changed files with 174 additions and 14 deletions

View File

@@ -1,16 +1,126 @@
import { createFromSource } from 'fumadocs-core/search/server'
import { source } from '@/lib/source'
import { sql } from 'drizzle-orm'
import { type NextRequest, NextResponse } from 'next/server'
import { db, docsEmbeddings } from '@/lib/db'
import { generateSearchEmbedding } from '@/lib/embeddings'
export const revalidate = 3600 // Revalidate every hour
export const runtime = 'nodejs'
export const revalidate = 0
export const { GET } = createFromSource(source, {
localeMap: {
en: { language: 'english' },
es: { language: 'spanish' },
fr: { language: 'french' },
de: { language: 'german' },
// ja and zh are not supported by the stemmer library, so we'll skip language config for them
ja: {},
zh: {},
},
})
/**
* Hybrid search API endpoint
* - English: Vector embeddings + keyword search
* - Other languages: Keyword search only
*/
export async function GET(request: NextRequest) {
try {
const searchParams = request.nextUrl.searchParams
const query = searchParams.get('query') || searchParams.get('q') || ''
const locale = searchParams.get('locale') || 'en'
const limit = Number.parseInt(searchParams.get('limit') || '10', 10)
if (!query || query.trim().length === 0) {
return NextResponse.json([])
}
const candidateLimit = limit * 3
const similarityThreshold = 0.6
const localeMap: Record<string, string> = {
en: 'english',
es: 'spanish',
fr: 'french',
de: 'german',
ja: 'simple', // PostgreSQL doesn't have Japanese support, use simple
zh: 'simple', // PostgreSQL doesn't have Chinese support, use simple
}
const tsConfig = localeMap[locale] || 'simple'
const useVectorSearch = locale === 'en'
let vectorResults: Array<{
chunkId: string
chunkText: string
sourceDocument: string
sourceLink: string
headerText: string
headerLevel: number
similarity: number
searchType: string
}> = []
if (useVectorSearch) {
const queryEmbedding = await generateSearchEmbedding(query)
vectorResults = await db
.select({
chunkId: docsEmbeddings.chunkId,
chunkText: docsEmbeddings.chunkText,
sourceDocument: docsEmbeddings.sourceDocument,
sourceLink: docsEmbeddings.sourceLink,
headerText: docsEmbeddings.headerText,
headerLevel: docsEmbeddings.headerLevel,
similarity: sql<number>`1 - (${docsEmbeddings.embedding} <=> ${JSON.stringify(queryEmbedding)}::vector)`,
searchType: sql<string>`'vector'`,
})
.from(docsEmbeddings)
.where(
sql`1 - (${docsEmbeddings.embedding} <=> ${JSON.stringify(queryEmbedding)}::vector) >= ${similarityThreshold}`
)
.orderBy(sql`${docsEmbeddings.embedding} <=> ${JSON.stringify(queryEmbedding)}::vector`)
.limit(candidateLimit)
}
const keywordResults = await db
.select({
chunkId: docsEmbeddings.chunkId,
chunkText: docsEmbeddings.chunkText,
sourceDocument: docsEmbeddings.sourceDocument,
sourceLink: docsEmbeddings.sourceLink,
headerText: docsEmbeddings.headerText,
headerLevel: docsEmbeddings.headerLevel,
similarity: sql<number>`ts_rank(${docsEmbeddings.chunkTextTsv}, plainto_tsquery(${tsConfig}, ${query}))`,
searchType: sql<string>`'keyword'`,
})
.from(docsEmbeddings)
.where(sql`${docsEmbeddings.chunkTextTsv} @@ plainto_tsquery(${tsConfig}, ${query})`)
.orderBy(
sql`ts_rank(${docsEmbeddings.chunkTextTsv}, plainto_tsquery(${tsConfig}, ${query})) DESC`
)
.limit(candidateLimit)
const seenIds = new Set<string>()
const mergedResults = []
for (let i = 0; i < Math.max(vectorResults.length, keywordResults.length); i++) {
if (i < vectorResults.length && !seenIds.has(vectorResults[i].chunkId)) {
mergedResults.push(vectorResults[i])
seenIds.add(vectorResults[i].chunkId)
}
if (i < keywordResults.length && !seenIds.has(keywordResults[i].chunkId)) {
mergedResults.push(keywordResults[i])
seenIds.add(keywordResults[i].chunkId)
}
}
const filteredResults = mergedResults.slice(0, limit)
const searchResults = filteredResults.map((result) => {
const title = result.headerText || result.sourceDocument.replace('.mdx', '')
const pathParts = result.sourceDocument
.replace('.mdx', '')
.split('/')
.map((part) => part.charAt(0).toUpperCase() + part.slice(1))
return {
id: result.chunkId,
type: 'page' as const,
url: result.sourceLink,
content: title,
breadcrumbs: pathParts,
}
})
return NextResponse.json(searchResults)
} catch (error) {
console.error('Semantic search error:', error)
return NextResponse.json([])
}
}

4
apps/docs/lib/db.ts Normal file
View File

@@ -0,0 +1,4 @@
import { db } from '@sim/db'
import { docsEmbeddings } from '@sim/db/schema'
export { db, docsEmbeddings }

View File

@@ -0,0 +1,40 @@
/**
* Generate embeddings for search queries using OpenAI API
*/
export async function generateSearchEmbedding(query: string): Promise<number[]> {
const apiKey = process.env.OPENAI_API_KEY
if (!apiKey) {
throw new Error('OPENAI_API_KEY environment variable is required')
}
const response = await fetch('https://api.openai.com/v1/embeddings', {
method: 'POST',
headers: {
Authorization: `Bearer ${apiKey}`,
'Content-Type': 'application/json',
},
body: JSON.stringify({
input: query,
model: 'text-embedding-3-small',
encoding_format: 'float',
}),
})
if (!response.ok) {
const errorText = await response.text()
throw new Error(`OpenAI API failed: ${response.status} ${response.statusText} - ${errorText}`)
}
const data = await response.json()
if (!data?.data || !Array.isArray(data.data) || data.data.length === 0) {
throw new Error('OpenAI API returned invalid response structure: missing or empty data array')
}
if (!data.data[0]?.embedding || !Array.isArray(data.data[0].embedding)) {
throw new Error('OpenAI API returned invalid response structure: missing or invalid embedding')
}
return data.data[0].embedding
}

View File

@@ -11,16 +11,19 @@
"type-check": "tsc --noEmit"
},
"dependencies": {
"@sim/db": "workspace:*",
"@tabler/icons-react": "^3.31.0",
"@vercel/og": "^0.6.5",
"class-variance-authority": "^0.7.1",
"clsx": "^2.1.1",
"drizzle-orm": "^0.44.5",
"fumadocs-core": "16.2.3",
"fumadocs-mdx": "14.1.0",
"fumadocs-ui": "16.2.3",
"lucide-react": "^0.511.0",
"next": "16.1.0-canary.21",
"next-themes": "^0.4.6",
"postgres": "^3.4.5",
"react": "19.2.1",
"react-dom": "19.2.1",
"tailwind-merge": "^3.0.2"