mirror of
https://github.com/simstudioai/sim.git
synced 2026-01-09 23:17:59 -05:00
* improvement(auth): added ability to inject secrets to kubernetes, server-side ff to disable email registration * consolidated telemetry events * comments cleanup * ack PR comment * refactor to use createEnvMock helper instead of local mocks
433 lines
14 KiB
TypeScript
433 lines
14 KiB
TypeScript
/**
|
|
* Tests for knowledge search utility functions
|
|
* Focuses on testing core functionality with simplified mocking
|
|
*
|
|
* @vitest-environment node
|
|
*/
|
|
import { createEnvMock } from '@sim/testing'
|
|
import { beforeEach, describe, expect, it, vi } from 'vitest'
|
|
|
|
vi.mock('drizzle-orm')
|
|
vi.mock('@sim/logger', () => ({
|
|
createLogger: vi.fn(() => ({
|
|
info: vi.fn(),
|
|
debug: vi.fn(),
|
|
warn: vi.fn(),
|
|
error: vi.fn(),
|
|
})),
|
|
}))
|
|
vi.mock('@sim/db')
|
|
vi.mock('@/lib/knowledge/documents/utils', () => ({
|
|
retryWithExponentialBackoff: (fn: any) => fn(),
|
|
}))
|
|
|
|
vi.stubGlobal(
|
|
'fetch',
|
|
vi.fn().mockResolvedValue({
|
|
ok: true,
|
|
json: async () => ({
|
|
data: [{ embedding: [0.1, 0.2, 0.3] }],
|
|
}),
|
|
})
|
|
)
|
|
|
|
vi.mock('@/lib/core/config/env', () => createEnvMock())
|
|
|
|
import {
|
|
generateSearchEmbedding,
|
|
handleTagAndVectorSearch,
|
|
handleTagOnlySearch,
|
|
handleVectorOnlySearch,
|
|
} from '@/app/api/knowledge/search/utils'
|
|
|
|
describe('Knowledge Search Utils', () => {
|
|
beforeEach(() => {
|
|
vi.clearAllMocks()
|
|
})
|
|
|
|
describe('handleTagOnlySearch', () => {
|
|
it('should throw error when no filters provided', async () => {
|
|
const params = {
|
|
knowledgeBaseIds: ['kb-123'],
|
|
topK: 10,
|
|
structuredFilters: [],
|
|
}
|
|
|
|
await expect(handleTagOnlySearch(params)).rejects.toThrow(
|
|
'Tag filters are required for tag-only search'
|
|
)
|
|
})
|
|
|
|
it('should accept valid parameters for tag-only search', async () => {
|
|
const params = {
|
|
knowledgeBaseIds: ['kb-123'],
|
|
topK: 10,
|
|
structuredFilters: [{ tagSlot: 'tag1', fieldType: 'text', operator: 'eq', value: 'api' }],
|
|
}
|
|
|
|
// This test validates the function accepts the right parameters
|
|
// The actual database interaction is tested via route tests
|
|
expect(params.knowledgeBaseIds).toEqual(['kb-123'])
|
|
expect(params.topK).toBe(10)
|
|
expect(params.structuredFilters).toHaveLength(1)
|
|
})
|
|
})
|
|
|
|
describe('handleVectorOnlySearch', () => {
|
|
it('should throw error when queryVector not provided', async () => {
|
|
const params = {
|
|
knowledgeBaseIds: ['kb-123'],
|
|
topK: 10,
|
|
distanceThreshold: 0.8,
|
|
}
|
|
|
|
await expect(handleVectorOnlySearch(params)).rejects.toThrow(
|
|
'Query vector and distance threshold are required for vector-only search'
|
|
)
|
|
})
|
|
|
|
it('should throw error when distanceThreshold not provided', async () => {
|
|
const params = {
|
|
knowledgeBaseIds: ['kb-123'],
|
|
topK: 10,
|
|
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
|
|
}
|
|
|
|
await expect(handleVectorOnlySearch(params)).rejects.toThrow(
|
|
'Query vector and distance threshold are required for vector-only search'
|
|
)
|
|
})
|
|
|
|
it('should accept valid parameters for vector-only search', async () => {
|
|
const params = {
|
|
knowledgeBaseIds: ['kb-123'],
|
|
topK: 10,
|
|
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
|
|
distanceThreshold: 0.8,
|
|
}
|
|
|
|
// This test validates the function accepts the right parameters
|
|
expect(params.knowledgeBaseIds).toEqual(['kb-123'])
|
|
expect(params.topK).toBe(10)
|
|
expect(params.queryVector).toBe(JSON.stringify([0.1, 0.2, 0.3]))
|
|
expect(params.distanceThreshold).toBe(0.8)
|
|
})
|
|
})
|
|
|
|
describe('handleTagAndVectorSearch', () => {
|
|
it('should throw error when no filters provided', async () => {
|
|
const params = {
|
|
knowledgeBaseIds: ['kb-123'],
|
|
topK: 10,
|
|
structuredFilters: [],
|
|
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
|
|
distanceThreshold: 0.8,
|
|
}
|
|
|
|
await expect(handleTagAndVectorSearch(params)).rejects.toThrow(
|
|
'Tag filters are required for tag and vector search'
|
|
)
|
|
})
|
|
|
|
it('should throw error when queryVector not provided', async () => {
|
|
const params = {
|
|
knowledgeBaseIds: ['kb-123'],
|
|
topK: 10,
|
|
structuredFilters: [{ tagSlot: 'tag1', fieldType: 'text', operator: 'eq', value: 'api' }],
|
|
distanceThreshold: 0.8,
|
|
}
|
|
|
|
await expect(handleTagAndVectorSearch(params)).rejects.toThrow(
|
|
'Query vector and distance threshold are required for tag and vector search'
|
|
)
|
|
})
|
|
|
|
it('should throw error when distanceThreshold not provided', async () => {
|
|
const params = {
|
|
knowledgeBaseIds: ['kb-123'],
|
|
topK: 10,
|
|
structuredFilters: [{ tagSlot: 'tag1', fieldType: 'text', operator: 'eq', value: 'api' }],
|
|
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
|
|
}
|
|
|
|
await expect(handleTagAndVectorSearch(params)).rejects.toThrow(
|
|
'Query vector and distance threshold are required for tag and vector search'
|
|
)
|
|
})
|
|
|
|
it('should accept valid parameters for tag and vector search', async () => {
|
|
const params = {
|
|
knowledgeBaseIds: ['kb-123'],
|
|
topK: 10,
|
|
structuredFilters: [{ tagSlot: 'tag1', fieldType: 'text', operator: 'eq', value: 'api' }],
|
|
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
|
|
distanceThreshold: 0.8,
|
|
}
|
|
|
|
// This test validates the function accepts the right parameters
|
|
expect(params.knowledgeBaseIds).toEqual(['kb-123'])
|
|
expect(params.topK).toBe(10)
|
|
expect(params.structuredFilters).toHaveLength(1)
|
|
expect(params.queryVector).toBe(JSON.stringify([0.1, 0.2, 0.3]))
|
|
expect(params.distanceThreshold).toBe(0.8)
|
|
})
|
|
})
|
|
|
|
describe('generateSearchEmbedding', () => {
|
|
it('should use Azure OpenAI when KB-specific config is provided', async () => {
|
|
const { env } = await import('@/lib/core/config/env')
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
Object.assign(env, {
|
|
AZURE_OPENAI_API_KEY: 'test-azure-key',
|
|
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
|
|
AZURE_OPENAI_API_VERSION: '2024-12-01-preview',
|
|
KB_OPENAI_MODEL_NAME: 'text-embedding-ada-002',
|
|
OPENAI_API_KEY: 'test-openai-key',
|
|
})
|
|
|
|
const fetchSpy = vi.mocked(fetch)
|
|
fetchSpy.mockResolvedValueOnce({
|
|
ok: true,
|
|
json: async () => ({
|
|
data: [{ embedding: [0.1, 0.2, 0.3] }],
|
|
}),
|
|
} as any)
|
|
|
|
const result = await generateSearchEmbedding('test query')
|
|
|
|
expect(fetchSpy).toHaveBeenCalledWith(
|
|
'https://test.openai.azure.com/openai/deployments/text-embedding-ada-002/embeddings?api-version=2024-12-01-preview',
|
|
expect.objectContaining({
|
|
headers: expect.objectContaining({
|
|
'api-key': 'test-azure-key',
|
|
}),
|
|
})
|
|
)
|
|
expect(result).toEqual([0.1, 0.2, 0.3])
|
|
|
|
// Clean up
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
})
|
|
|
|
it('should fallback to OpenAI when no KB Azure config provided', async () => {
|
|
const { env } = await import('@/lib/core/config/env')
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
Object.assign(env, {
|
|
OPENAI_API_KEY: 'test-openai-key',
|
|
})
|
|
|
|
const fetchSpy = vi.mocked(fetch)
|
|
fetchSpy.mockResolvedValueOnce({
|
|
ok: true,
|
|
json: async () => ({
|
|
data: [{ embedding: [0.1, 0.2, 0.3] }],
|
|
}),
|
|
} as any)
|
|
|
|
const result = await generateSearchEmbedding('test query')
|
|
|
|
expect(fetchSpy).toHaveBeenCalledWith(
|
|
'https://api.openai.com/v1/embeddings',
|
|
expect.objectContaining({
|
|
headers: expect.objectContaining({
|
|
Authorization: 'Bearer test-openai-key',
|
|
}),
|
|
})
|
|
)
|
|
expect(result).toEqual([0.1, 0.2, 0.3])
|
|
|
|
// Clean up
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
})
|
|
|
|
it('should use default API version when not provided in Azure config', async () => {
|
|
const { env } = await import('@/lib/core/config/env')
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
Object.assign(env, {
|
|
AZURE_OPENAI_API_KEY: 'test-azure-key',
|
|
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
|
|
KB_OPENAI_MODEL_NAME: 'custom-embedding-model',
|
|
OPENAI_API_KEY: 'test-openai-key',
|
|
})
|
|
|
|
const fetchSpy = vi.mocked(fetch)
|
|
fetchSpy.mockResolvedValueOnce({
|
|
ok: true,
|
|
json: async () => ({
|
|
data: [{ embedding: [0.1, 0.2, 0.3] }],
|
|
}),
|
|
} as any)
|
|
|
|
await generateSearchEmbedding('test query')
|
|
|
|
expect(fetchSpy).toHaveBeenCalledWith(
|
|
expect.stringContaining('api-version='),
|
|
expect.any(Object)
|
|
)
|
|
|
|
// Clean up
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
})
|
|
|
|
it('should use custom model name when provided in Azure config', async () => {
|
|
const { env } = await import('@/lib/core/config/env')
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
Object.assign(env, {
|
|
AZURE_OPENAI_API_KEY: 'test-azure-key',
|
|
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
|
|
AZURE_OPENAI_API_VERSION: '2024-12-01-preview',
|
|
KB_OPENAI_MODEL_NAME: 'custom-embedding-model',
|
|
OPENAI_API_KEY: 'test-openai-key',
|
|
})
|
|
|
|
const fetchSpy = vi.mocked(fetch)
|
|
fetchSpy.mockResolvedValueOnce({
|
|
ok: true,
|
|
json: async () => ({
|
|
data: [{ embedding: [0.1, 0.2, 0.3] }],
|
|
}),
|
|
} as any)
|
|
|
|
await generateSearchEmbedding('test query', 'text-embedding-3-small')
|
|
|
|
expect(fetchSpy).toHaveBeenCalledWith(
|
|
'https://test.openai.azure.com/openai/deployments/custom-embedding-model/embeddings?api-version=2024-12-01-preview',
|
|
expect.any(Object)
|
|
)
|
|
|
|
// Clean up
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
})
|
|
|
|
it('should throw error when no API configuration provided', async () => {
|
|
const { env } = await import('@/lib/core/config/env')
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
|
|
await expect(generateSearchEmbedding('test query')).rejects.toThrow(
|
|
'Either OPENAI_API_KEY or Azure OpenAI configuration (AZURE_OPENAI_API_KEY + AZURE_OPENAI_ENDPOINT) must be configured'
|
|
)
|
|
})
|
|
|
|
it('should handle Azure OpenAI API errors properly', async () => {
|
|
const { env } = await import('@/lib/core/config/env')
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
Object.assign(env, {
|
|
AZURE_OPENAI_API_KEY: 'test-azure-key',
|
|
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
|
|
AZURE_OPENAI_API_VERSION: '2024-12-01-preview',
|
|
KB_OPENAI_MODEL_NAME: 'text-embedding-ada-002',
|
|
})
|
|
|
|
const fetchSpy = vi.mocked(fetch)
|
|
fetchSpy.mockResolvedValueOnce({
|
|
ok: false,
|
|
status: 404,
|
|
statusText: 'Not Found',
|
|
text: async () => 'Deployment not found',
|
|
} as any)
|
|
|
|
await expect(generateSearchEmbedding('test query')).rejects.toThrow('Embedding API failed')
|
|
|
|
// Clean up
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
})
|
|
|
|
it('should handle OpenAI API errors properly', async () => {
|
|
const { env } = await import('@/lib/core/config/env')
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
Object.assign(env, {
|
|
OPENAI_API_KEY: 'test-openai-key',
|
|
})
|
|
|
|
const fetchSpy = vi.mocked(fetch)
|
|
fetchSpy.mockResolvedValueOnce({
|
|
ok: false,
|
|
status: 429,
|
|
statusText: 'Too Many Requests',
|
|
text: async () => 'Rate limit exceeded',
|
|
} as any)
|
|
|
|
await expect(generateSearchEmbedding('test query')).rejects.toThrow('Embedding API failed')
|
|
|
|
// Clean up
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
})
|
|
|
|
it('should include correct request body for Azure OpenAI', async () => {
|
|
const { env } = await import('@/lib/core/config/env')
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
Object.assign(env, {
|
|
AZURE_OPENAI_API_KEY: 'test-azure-key',
|
|
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
|
|
AZURE_OPENAI_API_VERSION: '2024-12-01-preview',
|
|
KB_OPENAI_MODEL_NAME: 'text-embedding-ada-002',
|
|
})
|
|
|
|
const fetchSpy = vi.mocked(fetch)
|
|
fetchSpy.mockResolvedValueOnce({
|
|
ok: true,
|
|
json: async () => ({
|
|
data: [{ embedding: [0.1, 0.2, 0.3] }],
|
|
}),
|
|
} as any)
|
|
|
|
await generateSearchEmbedding('test query')
|
|
|
|
expect(fetchSpy).toHaveBeenCalledWith(
|
|
expect.any(String),
|
|
expect.objectContaining({
|
|
body: JSON.stringify({
|
|
input: ['test query'],
|
|
encoding_format: 'float',
|
|
}),
|
|
})
|
|
)
|
|
|
|
// Clean up
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
})
|
|
|
|
it('should include correct request body for OpenAI', async () => {
|
|
const { env } = await import('@/lib/core/config/env')
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
Object.assign(env, {
|
|
OPENAI_API_KEY: 'test-openai-key',
|
|
})
|
|
|
|
const fetchSpy = vi.mocked(fetch)
|
|
fetchSpy.mockResolvedValueOnce({
|
|
ok: true,
|
|
json: async () => ({
|
|
data: [{ embedding: [0.1, 0.2, 0.3] }],
|
|
}),
|
|
} as any)
|
|
|
|
await generateSearchEmbedding('test query', 'text-embedding-3-small')
|
|
|
|
expect(fetchSpy).toHaveBeenCalledWith(
|
|
expect.any(String),
|
|
expect.objectContaining({
|
|
body: JSON.stringify({
|
|
input: ['test query'],
|
|
model: 'text-embedding-3-small',
|
|
encoding_format: 'float',
|
|
}),
|
|
})
|
|
)
|
|
|
|
// Clean up
|
|
Object.keys(env).forEach((key) => delete (env as any)[key])
|
|
})
|
|
})
|
|
|
|
describe('getDocumentNamesByIds', () => {
|
|
it('should handle empty input gracefully', async () => {
|
|
const { getDocumentNamesByIds } = await import('./utils')
|
|
|
|
const result = await getDocumentNamesByIds([])
|
|
|
|
expect(result).toEqual({})
|
|
})
|
|
})
|
|
})
|