Files
sim/apps/sim/app/api/knowledge/search/utils.test.ts
Waleed a54fcbc094 improvement(auth): added ability to inject secrets to kubernetes, server-side ff to disable email registration (#2728)
* improvement(auth): added ability to inject secrets to kubernetes, server-side ff to disable email registration

* consolidated telemetry events

* comments cleanup

* ack PR comment

* refactor to use createEnvMock helper instead of local mocks
2026-01-08 11:09:35 -08:00

433 lines
14 KiB
TypeScript

/**
* Tests for knowledge search utility functions
* Focuses on testing core functionality with simplified mocking
*
* @vitest-environment node
*/
import { createEnvMock } from '@sim/testing'
import { beforeEach, describe, expect, it, vi } from 'vitest'
vi.mock('drizzle-orm')
vi.mock('@sim/logger', () => ({
createLogger: vi.fn(() => ({
info: vi.fn(),
debug: vi.fn(),
warn: vi.fn(),
error: vi.fn(),
})),
}))
vi.mock('@sim/db')
vi.mock('@/lib/knowledge/documents/utils', () => ({
retryWithExponentialBackoff: (fn: any) => fn(),
}))
vi.stubGlobal(
'fetch',
vi.fn().mockResolvedValue({
ok: true,
json: async () => ({
data: [{ embedding: [0.1, 0.2, 0.3] }],
}),
})
)
vi.mock('@/lib/core/config/env', () => createEnvMock())
import {
generateSearchEmbedding,
handleTagAndVectorSearch,
handleTagOnlySearch,
handleVectorOnlySearch,
} from '@/app/api/knowledge/search/utils'
describe('Knowledge Search Utils', () => {
beforeEach(() => {
vi.clearAllMocks()
})
describe('handleTagOnlySearch', () => {
it('should throw error when no filters provided', async () => {
const params = {
knowledgeBaseIds: ['kb-123'],
topK: 10,
structuredFilters: [],
}
await expect(handleTagOnlySearch(params)).rejects.toThrow(
'Tag filters are required for tag-only search'
)
})
it('should accept valid parameters for tag-only search', async () => {
const params = {
knowledgeBaseIds: ['kb-123'],
topK: 10,
structuredFilters: [{ tagSlot: 'tag1', fieldType: 'text', operator: 'eq', value: 'api' }],
}
// This test validates the function accepts the right parameters
// The actual database interaction is tested via route tests
expect(params.knowledgeBaseIds).toEqual(['kb-123'])
expect(params.topK).toBe(10)
expect(params.structuredFilters).toHaveLength(1)
})
})
describe('handleVectorOnlySearch', () => {
it('should throw error when queryVector not provided', async () => {
const params = {
knowledgeBaseIds: ['kb-123'],
topK: 10,
distanceThreshold: 0.8,
}
await expect(handleVectorOnlySearch(params)).rejects.toThrow(
'Query vector and distance threshold are required for vector-only search'
)
})
it('should throw error when distanceThreshold not provided', async () => {
const params = {
knowledgeBaseIds: ['kb-123'],
topK: 10,
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
}
await expect(handleVectorOnlySearch(params)).rejects.toThrow(
'Query vector and distance threshold are required for vector-only search'
)
})
it('should accept valid parameters for vector-only search', async () => {
const params = {
knowledgeBaseIds: ['kb-123'],
topK: 10,
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
distanceThreshold: 0.8,
}
// This test validates the function accepts the right parameters
expect(params.knowledgeBaseIds).toEqual(['kb-123'])
expect(params.topK).toBe(10)
expect(params.queryVector).toBe(JSON.stringify([0.1, 0.2, 0.3]))
expect(params.distanceThreshold).toBe(0.8)
})
})
describe('handleTagAndVectorSearch', () => {
it('should throw error when no filters provided', async () => {
const params = {
knowledgeBaseIds: ['kb-123'],
topK: 10,
structuredFilters: [],
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
distanceThreshold: 0.8,
}
await expect(handleTagAndVectorSearch(params)).rejects.toThrow(
'Tag filters are required for tag and vector search'
)
})
it('should throw error when queryVector not provided', async () => {
const params = {
knowledgeBaseIds: ['kb-123'],
topK: 10,
structuredFilters: [{ tagSlot: 'tag1', fieldType: 'text', operator: 'eq', value: 'api' }],
distanceThreshold: 0.8,
}
await expect(handleTagAndVectorSearch(params)).rejects.toThrow(
'Query vector and distance threshold are required for tag and vector search'
)
})
it('should throw error when distanceThreshold not provided', async () => {
const params = {
knowledgeBaseIds: ['kb-123'],
topK: 10,
structuredFilters: [{ tagSlot: 'tag1', fieldType: 'text', operator: 'eq', value: 'api' }],
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
}
await expect(handleTagAndVectorSearch(params)).rejects.toThrow(
'Query vector and distance threshold are required for tag and vector search'
)
})
it('should accept valid parameters for tag and vector search', async () => {
const params = {
knowledgeBaseIds: ['kb-123'],
topK: 10,
structuredFilters: [{ tagSlot: 'tag1', fieldType: 'text', operator: 'eq', value: 'api' }],
queryVector: JSON.stringify([0.1, 0.2, 0.3]),
distanceThreshold: 0.8,
}
// This test validates the function accepts the right parameters
expect(params.knowledgeBaseIds).toEqual(['kb-123'])
expect(params.topK).toBe(10)
expect(params.structuredFilters).toHaveLength(1)
expect(params.queryVector).toBe(JSON.stringify([0.1, 0.2, 0.3]))
expect(params.distanceThreshold).toBe(0.8)
})
})
describe('generateSearchEmbedding', () => {
it('should use Azure OpenAI when KB-specific config is provided', async () => {
const { env } = await import('@/lib/core/config/env')
Object.keys(env).forEach((key) => delete (env as any)[key])
Object.assign(env, {
AZURE_OPENAI_API_KEY: 'test-azure-key',
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
AZURE_OPENAI_API_VERSION: '2024-12-01-preview',
KB_OPENAI_MODEL_NAME: 'text-embedding-ada-002',
OPENAI_API_KEY: 'test-openai-key',
})
const fetchSpy = vi.mocked(fetch)
fetchSpy.mockResolvedValueOnce({
ok: true,
json: async () => ({
data: [{ embedding: [0.1, 0.2, 0.3] }],
}),
} as any)
const result = await generateSearchEmbedding('test query')
expect(fetchSpy).toHaveBeenCalledWith(
'https://test.openai.azure.com/openai/deployments/text-embedding-ada-002/embeddings?api-version=2024-12-01-preview',
expect.objectContaining({
headers: expect.objectContaining({
'api-key': 'test-azure-key',
}),
})
)
expect(result).toEqual([0.1, 0.2, 0.3])
// Clean up
Object.keys(env).forEach((key) => delete (env as any)[key])
})
it('should fallback to OpenAI when no KB Azure config provided', async () => {
const { env } = await import('@/lib/core/config/env')
Object.keys(env).forEach((key) => delete (env as any)[key])
Object.assign(env, {
OPENAI_API_KEY: 'test-openai-key',
})
const fetchSpy = vi.mocked(fetch)
fetchSpy.mockResolvedValueOnce({
ok: true,
json: async () => ({
data: [{ embedding: [0.1, 0.2, 0.3] }],
}),
} as any)
const result = await generateSearchEmbedding('test query')
expect(fetchSpy).toHaveBeenCalledWith(
'https://api.openai.com/v1/embeddings',
expect.objectContaining({
headers: expect.objectContaining({
Authorization: 'Bearer test-openai-key',
}),
})
)
expect(result).toEqual([0.1, 0.2, 0.3])
// Clean up
Object.keys(env).forEach((key) => delete (env as any)[key])
})
it('should use default API version when not provided in Azure config', async () => {
const { env } = await import('@/lib/core/config/env')
Object.keys(env).forEach((key) => delete (env as any)[key])
Object.assign(env, {
AZURE_OPENAI_API_KEY: 'test-azure-key',
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
KB_OPENAI_MODEL_NAME: 'custom-embedding-model',
OPENAI_API_KEY: 'test-openai-key',
})
const fetchSpy = vi.mocked(fetch)
fetchSpy.mockResolvedValueOnce({
ok: true,
json: async () => ({
data: [{ embedding: [0.1, 0.2, 0.3] }],
}),
} as any)
await generateSearchEmbedding('test query')
expect(fetchSpy).toHaveBeenCalledWith(
expect.stringContaining('api-version='),
expect.any(Object)
)
// Clean up
Object.keys(env).forEach((key) => delete (env as any)[key])
})
it('should use custom model name when provided in Azure config', async () => {
const { env } = await import('@/lib/core/config/env')
Object.keys(env).forEach((key) => delete (env as any)[key])
Object.assign(env, {
AZURE_OPENAI_API_KEY: 'test-azure-key',
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
AZURE_OPENAI_API_VERSION: '2024-12-01-preview',
KB_OPENAI_MODEL_NAME: 'custom-embedding-model',
OPENAI_API_KEY: 'test-openai-key',
})
const fetchSpy = vi.mocked(fetch)
fetchSpy.mockResolvedValueOnce({
ok: true,
json: async () => ({
data: [{ embedding: [0.1, 0.2, 0.3] }],
}),
} as any)
await generateSearchEmbedding('test query', 'text-embedding-3-small')
expect(fetchSpy).toHaveBeenCalledWith(
'https://test.openai.azure.com/openai/deployments/custom-embedding-model/embeddings?api-version=2024-12-01-preview',
expect.any(Object)
)
// Clean up
Object.keys(env).forEach((key) => delete (env as any)[key])
})
it('should throw error when no API configuration provided', async () => {
const { env } = await import('@/lib/core/config/env')
Object.keys(env).forEach((key) => delete (env as any)[key])
await expect(generateSearchEmbedding('test query')).rejects.toThrow(
'Either OPENAI_API_KEY or Azure OpenAI configuration (AZURE_OPENAI_API_KEY + AZURE_OPENAI_ENDPOINT) must be configured'
)
})
it('should handle Azure OpenAI API errors properly', async () => {
const { env } = await import('@/lib/core/config/env')
Object.keys(env).forEach((key) => delete (env as any)[key])
Object.assign(env, {
AZURE_OPENAI_API_KEY: 'test-azure-key',
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
AZURE_OPENAI_API_VERSION: '2024-12-01-preview',
KB_OPENAI_MODEL_NAME: 'text-embedding-ada-002',
})
const fetchSpy = vi.mocked(fetch)
fetchSpy.mockResolvedValueOnce({
ok: false,
status: 404,
statusText: 'Not Found',
text: async () => 'Deployment not found',
} as any)
await expect(generateSearchEmbedding('test query')).rejects.toThrow('Embedding API failed')
// Clean up
Object.keys(env).forEach((key) => delete (env as any)[key])
})
it('should handle OpenAI API errors properly', async () => {
const { env } = await import('@/lib/core/config/env')
Object.keys(env).forEach((key) => delete (env as any)[key])
Object.assign(env, {
OPENAI_API_KEY: 'test-openai-key',
})
const fetchSpy = vi.mocked(fetch)
fetchSpy.mockResolvedValueOnce({
ok: false,
status: 429,
statusText: 'Too Many Requests',
text: async () => 'Rate limit exceeded',
} as any)
await expect(generateSearchEmbedding('test query')).rejects.toThrow('Embedding API failed')
// Clean up
Object.keys(env).forEach((key) => delete (env as any)[key])
})
it('should include correct request body for Azure OpenAI', async () => {
const { env } = await import('@/lib/core/config/env')
Object.keys(env).forEach((key) => delete (env as any)[key])
Object.assign(env, {
AZURE_OPENAI_API_KEY: 'test-azure-key',
AZURE_OPENAI_ENDPOINT: 'https://test.openai.azure.com',
AZURE_OPENAI_API_VERSION: '2024-12-01-preview',
KB_OPENAI_MODEL_NAME: 'text-embedding-ada-002',
})
const fetchSpy = vi.mocked(fetch)
fetchSpy.mockResolvedValueOnce({
ok: true,
json: async () => ({
data: [{ embedding: [0.1, 0.2, 0.3] }],
}),
} as any)
await generateSearchEmbedding('test query')
expect(fetchSpy).toHaveBeenCalledWith(
expect.any(String),
expect.objectContaining({
body: JSON.stringify({
input: ['test query'],
encoding_format: 'float',
}),
})
)
// Clean up
Object.keys(env).forEach((key) => delete (env as any)[key])
})
it('should include correct request body for OpenAI', async () => {
const { env } = await import('@/lib/core/config/env')
Object.keys(env).forEach((key) => delete (env as any)[key])
Object.assign(env, {
OPENAI_API_KEY: 'test-openai-key',
})
const fetchSpy = vi.mocked(fetch)
fetchSpy.mockResolvedValueOnce({
ok: true,
json: async () => ({
data: [{ embedding: [0.1, 0.2, 0.3] }],
}),
} as any)
await generateSearchEmbedding('test query', 'text-embedding-3-small')
expect(fetchSpy).toHaveBeenCalledWith(
expect.any(String),
expect.objectContaining({
body: JSON.stringify({
input: ['test query'],
model: 'text-embedding-3-small',
encoding_format: 'float',
}),
})
)
// Clean up
Object.keys(env).forEach((key) => delete (env as any)[key])
})
})
describe('getDocumentNamesByIds', () => {
it('should handle empty input gracefully', async () => {
const { getDocumentNamesByIds } = await import('./utils')
const result = await getDocumentNamesByIds([])
expect(result).toEqual({})
})
})
})