Files
sim/apps/docs/app/api/search/route.ts

212 lines
6.7 KiB
TypeScript

import { sql } from 'drizzle-orm'
import { type NextRequest, NextResponse } from 'next/server'
import { db, docsEmbeddings } from '@/lib/db'
import { generateSearchEmbedding } from '@/lib/embeddings'
export const runtime = 'nodejs'
export const revalidate = 0
/**
* Hybrid search API endpoint
* - English: Vector embeddings + keyword search
* - Other languages: Keyword search only
*/
export async function GET(request: NextRequest) {
try {
const searchParams = request.nextUrl.searchParams
const query = searchParams.get('query') || searchParams.get('q') || ''
const locale = searchParams.get('locale') || 'en'
const limit = Number.parseInt(searchParams.get('limit') || '10', 10)
if (!query || query.trim().length === 0) {
return NextResponse.json([])
}
const candidateLimit = limit * 3
const similarityThreshold = 0.6
const localeMap: Record<string, string> = {
en: 'english',
es: 'spanish',
fr: 'french',
de: 'german',
ja: 'simple', // PostgreSQL doesn't have Japanese support, use simple
zh: 'simple', // PostgreSQL doesn't have Chinese support, use simple
}
const tsConfig = localeMap[locale] || 'simple'
const useVectorSearch = locale === 'en'
let vectorResults: Array<{
chunkId: string
chunkText: string
sourceDocument: string
sourceLink: string
headerText: string
headerLevel: number
similarity: number
searchType: string
}> = []
if (useVectorSearch) {
const queryEmbedding = await generateSearchEmbedding(query)
vectorResults = await db
.select({
chunkId: docsEmbeddings.chunkId,
chunkText: docsEmbeddings.chunkText,
sourceDocument: docsEmbeddings.sourceDocument,
sourceLink: docsEmbeddings.sourceLink,
headerText: docsEmbeddings.headerText,
headerLevel: docsEmbeddings.headerLevel,
similarity: sql<number>`1 - (${docsEmbeddings.embedding} <=> ${JSON.stringify(queryEmbedding)}::vector)`,
searchType: sql<string>`'vector'`,
})
.from(docsEmbeddings)
.where(
sql`1 - (${docsEmbeddings.embedding} <=> ${JSON.stringify(queryEmbedding)}::vector) >= ${similarityThreshold}`
)
.orderBy(sql`${docsEmbeddings.embedding} <=> ${JSON.stringify(queryEmbedding)}::vector`)
.limit(candidateLimit)
}
const keywordResults = await db
.select({
chunkId: docsEmbeddings.chunkId,
chunkText: docsEmbeddings.chunkText,
sourceDocument: docsEmbeddings.sourceDocument,
sourceLink: docsEmbeddings.sourceLink,
headerText: docsEmbeddings.headerText,
headerLevel: docsEmbeddings.headerLevel,
similarity: sql<number>`ts_rank(${docsEmbeddings.chunkTextTsv}, plainto_tsquery(${tsConfig}, ${query}))`,
searchType: sql<string>`'keyword'`,
})
.from(docsEmbeddings)
.where(sql`${docsEmbeddings.chunkTextTsv} @@ plainto_tsquery(${tsConfig}, ${query})`)
.orderBy(
sql`ts_rank(${docsEmbeddings.chunkTextTsv}, plainto_tsquery(${tsConfig}, ${query})) DESC`
)
.limit(candidateLimit)
const knownLocales = ['en', 'es', 'fr', 'de', 'ja', 'zh']
const vectorRankMap = new Map<string, number>()
vectorResults.forEach((r, idx) => vectorRankMap.set(r.chunkId, idx + 1))
const keywordRankMap = new Map<string, number>()
keywordResults.forEach((r, idx) => keywordRankMap.set(r.chunkId, idx + 1))
const allChunkIds = new Set([
...vectorResults.map((r) => r.chunkId),
...keywordResults.map((r) => r.chunkId),
])
const k = 60
type ResultWithRRF = (typeof vectorResults)[0] & { rrfScore: number }
const scoredResults: ResultWithRRF[] = []
for (const chunkId of allChunkIds) {
const vectorRank = vectorRankMap.get(chunkId) ?? Number.POSITIVE_INFINITY
const keywordRank = keywordRankMap.get(chunkId) ?? Number.POSITIVE_INFINITY
const rrfScore = 1 / (k + vectorRank) + 1 / (k + keywordRank)
const result =
vectorResults.find((r) => r.chunkId === chunkId) ||
keywordResults.find((r) => r.chunkId === chunkId)
if (result) {
scoredResults.push({ ...result, rrfScore })
}
}
scoredResults.sort((a, b) => b.rrfScore - a.rrfScore)
const localeFilteredResults = scoredResults.filter((result) => {
const firstPart = result.sourceDocument.split('/')[0]
if (knownLocales.includes(firstPart)) {
return firstPart === locale
}
return locale === 'en'
})
const queryLower = query.toLowerCase()
const getTitleBoost = (result: ResultWithRRF): number => {
const fileName = result.sourceDocument
.replace('.mdx', '')
.split('/')
.pop()
?.toLowerCase()
?.replace(/_/g, ' ')
if (fileName === queryLower) return 0.01
if (fileName?.includes(queryLower)) return 0.005
return 0
}
localeFilteredResults.sort((a, b) => {
return b.rrfScore + getTitleBoost(b) - (a.rrfScore + getTitleBoost(a))
})
const pageMap = new Map<string, ResultWithRRF>()
for (const result of localeFilteredResults) {
const pageKey = result.sourceDocument
const existing = pageMap.get(pageKey)
if (!existing || result.rrfScore > existing.rrfScore) {
pageMap.set(pageKey, result)
}
}
const deduplicatedResults = Array.from(pageMap.values())
.sort((a, b) => b.rrfScore + getTitleBoost(b) - (a.rrfScore + getTitleBoost(a)))
.slice(0, limit)
const searchResults = deduplicatedResults.map((result) => {
const title = result.headerText || result.sourceDocument.replace('.mdx', '')
const pathParts = result.sourceDocument
.replace('.mdx', '')
.split('/')
.filter((part) => part !== 'index' && !knownLocales.includes(part))
.map((part) => {
return part
.replace(/_/g, ' ')
.split(' ')
.map((word) => {
const acronyms = [
'api',
'mcp',
'sdk',
'url',
'http',
'json',
'xml',
'html',
'css',
'ai',
]
if (acronyms.includes(word.toLowerCase())) {
return word.toUpperCase()
}
return word.charAt(0).toUpperCase() + word.slice(1)
})
.join(' ')
})
return {
id: result.chunkId,
type: 'page' as const,
url: result.sourceLink,
content: title,
breadcrumbs: pathParts,
}
})
return NextResponse.json(searchResults)
} catch (error) {
console.error('Semantic search error:', error)
return NextResponse.json([])
}
}