Files
sim/apps/docs/content/docs/de/sdks/python.mdx
Vikhyath Mondreti fe9ebbf81b improvement(api-keys): move to workspace level (#1765)
* fix(billing): should allow restoring subscription (#1728)

* fix(already-cancelled-sub): UI should allow restoring subscription

* restore functionality fixed

* fix

* improvement(api-keys): move to workspace level

* remove migration to prep merge

* remove two more unused cols

* prep staging  merge

* add migration back

---------

Co-authored-by: Waleed <walif6@gmail.com>
Co-authored-by: Siddharth Ganesan <33737564+Sg312@users.noreply.github.com>
2025-10-30 11:42:58 -07:00

757 lines
21 KiB
Plaintext

---
title: Python
---
import { Callout } from 'fumadocs-ui/components/callout'
import { Card, Cards } from 'fumadocs-ui/components/card'
import { Step, Steps } from 'fumadocs-ui/components/steps'
import { Tab, Tabs } from 'fumadocs-ui/components/tabs'
Das offizielle Python SDK für Sim ermöglicht es Ihnen, Workflows programmatisch aus Ihren Python-Anwendungen mithilfe des offiziellen Python SDKs auszuführen.
<Callout type="info">
Das Python SDK unterstützt Python 3.8+ mit asynchroner Ausführungsunterstützung, automatischer Ratenbegrenzung mit exponentiellem Backoff und Nutzungsverfolgung.
</Callout>
## Installation
Installieren Sie das SDK mit pip:
```bash
pip install simstudio-sdk
```
## Schnellstart
Hier ist ein einfaches Beispiel für den Einstieg:
```python
from simstudio import SimStudioClient
# Initialize the client
client = SimStudioClient(
api_key="your-api-key-here",
base_url="https://sim.ai" # optional, defaults to https://sim.ai
)
# Execute a workflow
try:
result = client.execute_workflow("workflow-id")
print("Workflow executed successfully:", result)
except Exception as error:
print("Workflow execution failed:", error)
```
## API-Referenz
### SimStudioClient
#### Konstruktor
```python
SimStudioClient(api_key: str, base_url: str = "https://sim.ai")
```
**Parameter:**
- `api_key` (str): Ihr Sim API-Schlüssel
- `base_url` (str, optional): Basis-URL für die Sim API
#### Methoden
##### execute_workflow()
Führt einen Workflow mit optionalen Eingabedaten aus.
```python
result = client.execute_workflow(
"workflow-id",
input_data={"message": "Hello, world!"},
timeout=30.0 # 30 seconds
)
```
**Parameter:**
- `workflow_id` (str): Die ID des auszuführenden Workflows
- `input_data` (dict, optional): Eingabedaten, die an den Workflow übergeben werden
- `timeout` (float, optional): Timeout in Sekunden (Standard: 30.0)
- `stream` (bool, optional): Streaming-Antworten aktivieren (Standard: False)
- `selected_outputs` (list[str], optional): Block-Ausgaben, die im `blockName.attribute`Format gestreamt werden sollen (z.B. `["agent1.content"]`)
- `async_execution` (bool, optional): Asynchron ausführen (Standard: False)
**Rückgabe:** `WorkflowExecutionResult | AsyncExecutionResult`
Wenn `async_execution=True`, wird sofort mit einer Task-ID zum Abfragen zurückgegeben. Andernfalls wird auf den Abschluss gewartet.
##### get_workflow_status()
Den Status eines Workflows abrufen (Bereitstellungsstatus usw.).
```python
status = client.get_workflow_status("workflow-id")
print("Is deployed:", status.is_deployed)
```
**Parameter:**
- `workflow_id` (str): Die ID des Workflows
**Rückgabe:** `WorkflowStatus`
##### validate_workflow()
Überprüfen, ob ein Workflow für die Ausführung bereit ist.
```python
is_ready = client.validate_workflow("workflow-id")
if is_ready:
# Workflow is deployed and ready
pass
```
**Parameter:**
- `workflow_id` (str): Die ID des Workflows
**Rückgabe:** `bool`
##### get_job_status()
Den Status einer asynchronen Job-Ausführung abrufen.
```python
status = client.get_job_status("task-id-from-async-execution")
print("Status:", status["status"]) # 'queued', 'processing', 'completed', 'failed'
if status["status"] == "completed":
print("Output:", status["output"])
```
**Parameter:**
- `task_id` (str): Die Task-ID, die von der asynchronen Ausführung zurückgegeben wurde
**Rückgabe:** `Dict[str, Any]`
**Antwortfelder:**
- `success` (bool): Ob die Anfrage erfolgreich war
- `taskId` (str): Die Task-ID
- `status` (str): Einer der Werte `'queued'`, `'processing'`, `'completed'`, `'failed'`, `'cancelled'`
- `metadata` (dict): Enthält `startedAt`, `completedAt` und `duration`
- `output` (any, optional): Die Workflow-Ausgabe (wenn abgeschlossen)
- `error` (any, optional): Fehlerdetails (wenn fehlgeschlagen)
- `estimatedDuration` (int, optional): Geschätzte Dauer in Millisekunden (wenn in Bearbeitung/in Warteschlange)
##### execute_with_retry()
Einen Workflow mit automatischer Wiederholung bei Ratenbegrenzungsfehlern unter Verwendung von exponentiellem Backoff ausführen.
```python
result = client.execute_with_retry(
"workflow-id",
input_data={"message": "Hello"},
timeout=30.0,
max_retries=3, # Maximum number of retries
initial_delay=1.0, # Initial delay in seconds
max_delay=30.0, # Maximum delay in seconds
backoff_multiplier=2.0 # Exponential backoff multiplier
)
```
**Parameter:**
- `workflow_id` (str): Die ID des auszuführenden Workflows
- `input_data` (dict, optional): Eingabedaten, die an den Workflow übergeben werden
- `timeout` (float, optional): Timeout in Sekunden
- `stream` (bool, optional): Streaming-Antworten aktivieren
- `selected_outputs` (list, optional): Block-Ausgaben zum Streamen
- `async_execution` (bool, optional): Asynchron ausführen
- `max_retries` (int, optional): Maximale Anzahl von Wiederholungen (Standard: 3)
- `initial_delay` (float, optional): Anfängliche Verzögerung in Sekunden (Standard: 1.0)
- `max_delay` (float, optional): Maximale Verzögerung in Sekunden (Standard: 30.0)
- `backoff_multiplier` (float, optional): Backoff-Multiplikator (Standard: 2.0)
**Rückgabewert:** `WorkflowExecutionResult | AsyncExecutionResult`
Die Wiederholungslogik verwendet exponentielles Backoff (1s → 2s → 4s → 8s...) mit ±25% Jitter, um den Thundering-Herd-Effekt zu vermeiden. Wenn die API einen `retry-after` Header bereitstellt, wird dieser stattdessen verwendet.
##### get_rate_limit_info()
Ruft die aktuellen Rate-Limit-Informationen aus der letzten API-Antwort ab.
```python
rate_limit_info = client.get_rate_limit_info()
if rate_limit_info:
print("Limit:", rate_limit_info.limit)
print("Remaining:", rate_limit_info.remaining)
print("Reset:", datetime.fromtimestamp(rate_limit_info.reset))
```
**Rückgabewert:** `RateLimitInfo | None`
##### get_usage_limits()
Ruft aktuelle Nutzungslimits und Kontingentinformationen für dein Konto ab.
```python
limits = client.get_usage_limits()
print("Sync requests remaining:", limits.rate_limit["sync"]["remaining"])
print("Async requests remaining:", limits.rate_limit["async"]["remaining"])
print("Current period cost:", limits.usage["currentPeriodCost"])
print("Plan:", limits.usage["plan"])
```
**Rückgabewert:** `UsageLimits`
**Antwortstruktur:**
```python
{
"success": bool,
"rateLimit": {
"sync": {
"isLimited": bool,
"limit": int,
"remaining": int,
"resetAt": str
},
"async": {
"isLimited": bool,
"limit": int,
"remaining": int,
"resetAt": str
},
"authType": str # 'api' or 'manual'
},
"usage": {
"currentPeriodCost": float,
"limit": float,
"plan": str # e.g., 'free', 'pro'
}
}
```
##### set_api_key()
Aktualisiert den API-Schlüssel.
```python
client.set_api_key("new-api-key")
```
##### set_base_url()
Aktualisiert die Basis-URL.
```python
client.set_base_url("https://my-custom-domain.com")
```
##### close()
Schließt die zugrunde liegende HTTP-Sitzung.
```python
client.close()
```
## Datenklassen
### WorkflowExecutionResult
```python
@dataclass
class WorkflowExecutionResult:
success: bool
output: Optional[Any] = None
error: Optional[str] = None
logs: Optional[List[Any]] = None
metadata: Optional[Dict[str, Any]] = None
trace_spans: Optional[List[Any]] = None
total_duration: Optional[float] = None
```
### AsyncExecutionResult
```python
@dataclass
class AsyncExecutionResult:
success: bool
task_id: str
status: str # 'queued'
created_at: str
links: Dict[str, str] # e.g., {"status": "/api/jobs/{taskId}"}
```
### WorkflowStatus
```python
@dataclass
class WorkflowStatus:
is_deployed: bool
deployed_at: Optional[str] = None
needs_redeployment: bool = False
```
### RateLimitInfo
```python
@dataclass
class RateLimitInfo:
limit: int
remaining: int
reset: int
retry_after: Optional[int] = None
```
### UsageLimits
```python
@dataclass
class UsageLimits:
success: bool
rate_limit: Dict[str, Any]
usage: Dict[str, Any]
```
### SimStudioError
```python
class SimStudioError(Exception):
def __init__(self, message: str, code: Optional[str] = None, status: Optional[int] = None):
super().__init__(message)
self.code = code
self.status = status
```
**Häufige Fehlercodes:**
- `UNAUTHORIZED`: Ungültiger API-Schlüssel
- `TIMEOUT`: Zeitüberschreitung bei der Anfrage
- `RATE_LIMIT_EXCEEDED`: Ratengrenze überschritten
- `USAGE_LIMIT_EXCEEDED`: Nutzungsgrenze überschritten
- `EXECUTION_ERROR`: Workflow-Ausführung fehlgeschlagen
## Beispiele
### Grundlegende Workflow-Ausführung
<Steps>
<Step title="Client initialisieren">
Richten Sie den SimStudioClient mit Ihrem API-Schlüssel ein.
</Step>
<Step title="Workflow validieren">
Prüfen Sie, ob der Workflow bereitgestellt und für die Ausführung bereit ist.
</Step>
<Step title="Workflow ausführen">
Führen Sie den Workflow mit Ihren Eingabedaten aus.
</Step>
<Step title="Ergebnis verarbeiten">
Verarbeiten Sie das Ausführungsergebnis und behandeln Sie eventuelle Fehler.
</Step>
</Steps>
```python
import os
from simstudio import SimStudioClient
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
def run_workflow():
try:
# Check if workflow is ready
is_ready = client.validate_workflow("my-workflow-id")
if not is_ready:
raise Exception("Workflow is not deployed or ready")
# Execute the workflow
result = client.execute_workflow(
"my-workflow-id",
input_data={
"message": "Process this data",
"user_id": "12345"
}
)
if result.success:
print("Output:", result.output)
print("Duration:", result.metadata.get("duration") if result.metadata else None)
else:
print("Workflow failed:", result.error)
except Exception as error:
print("Error:", error)
run_workflow()
```
### Fehlerbehandlung
Behandeln Sie verschiedene Fehlertypen, die während der Workflow-Ausführung auftreten können:
```python
from simstudio import SimStudioClient, SimStudioError
import os
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
def execute_with_error_handling():
try:
result = client.execute_workflow("workflow-id")
return result
except SimStudioError as error:
if error.code == "UNAUTHORIZED":
print("Invalid API key")
elif error.code == "TIMEOUT":
print("Workflow execution timed out")
elif error.code == "USAGE_LIMIT_EXCEEDED":
print("Usage limit exceeded")
elif error.code == "INVALID_JSON":
print("Invalid JSON in request body")
else:
print(f"Workflow error: {error}")
raise
except Exception as error:
print(f"Unexpected error: {error}")
raise
```
### Verwendung des Kontextmanagers
Verwenden Sie den Client als Kontextmanager, um die Ressourcenbereinigung automatisch zu handhaben:
---CODE-PLACEHOLDER-ef99d3dd509e04865d5b6b0e0e03d3f8---
### Batch-Workflow-Ausführung
Führen Sie mehrere Workflows effizient aus:
```python
from simstudio import SimStudioClient
import os
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
def execute_workflows_batch(workflow_data_pairs):
"""Execute multiple workflows with different input data."""
results = []
for workflow_id, input_data in workflow_data_pairs:
try:
# Validate workflow before execution
if not client.validate_workflow(workflow_id):
print(f"Skipping {workflow_id}: not deployed")
continue
result = client.execute_workflow(workflow_id, input_data)
results.append({
"workflow_id": workflow_id,
"success": result.success,
"output": result.output,
"error": result.error
})
except Exception as error:
results.append({
"workflow_id": workflow_id,
"success": False,
"error": str(error)
})
return results
# Example usage
workflows = [
("workflow-1", {"type": "analysis", "data": "sample1"}),
("workflow-2", {"type": "processing", "data": "sample2"}),
]
results = execute_workflows_batch(workflows)
for result in results:
print(f"Workflow {result['workflow_id']}: {'Success' if result['success'] else 'Failed'}")
```
### Asynchrone Workflow-Ausführung
Führen Sie Workflows asynchron für lang laufende Aufgaben aus:
```python
import os
import time
from simstudio import SimStudioClient
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
def execute_async():
try:
# Start async execution
result = client.execute_workflow(
"workflow-id",
input_data={"data": "large dataset"},
async_execution=True # Execute asynchronously
)
# Check if result is an async execution
if hasattr(result, 'task_id'):
print(f"Task ID: {result.task_id}")
print(f"Status endpoint: {result.links['status']}")
# Poll for completion
status = client.get_job_status(result.task_id)
while status["status"] in ["queued", "processing"]:
print(f"Current status: {status['status']}")
time.sleep(2) # Wait 2 seconds
status = client.get_job_status(result.task_id)
if status["status"] == "completed":
print("Workflow completed!")
print(f"Output: {status['output']}")
print(f"Duration: {status['metadata']['duration']}")
else:
print(f"Workflow failed: {status['error']}")
except Exception as error:
print(f"Error: {error}")
execute_async()
```
### Rate-Limiting und Wiederholungsversuche
Behandle Rate-Limits automatisch mit exponentiellem Backoff:
```python
import os
from simstudio import SimStudioClient, SimStudioError
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
def execute_with_retry_handling():
try:
# Automatically retries on rate limit
result = client.execute_with_retry(
"workflow-id",
input_data={"message": "Process this"},
max_retries=5,
initial_delay=1.0,
max_delay=60.0,
backoff_multiplier=2.0
)
print(f"Success: {result}")
except SimStudioError as error:
if error.code == "RATE_LIMIT_EXCEEDED":
print("Rate limit exceeded after all retries")
# Check rate limit info
rate_limit_info = client.get_rate_limit_info()
if rate_limit_info:
from datetime import datetime
reset_time = datetime.fromtimestamp(rate_limit_info.reset)
print(f"Rate limit resets at: {reset_time}")
execute_with_retry_handling()
```
### Nutzungsüberwachung
Überwache deine Kontonutzung und -limits:
```python
import os
from simstudio import SimStudioClient
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
def check_usage():
try:
limits = client.get_usage_limits()
print("=== Rate Limits ===")
print("Sync requests:")
print(f" Limit: {limits.rate_limit['sync']['limit']}")
print(f" Remaining: {limits.rate_limit['sync']['remaining']}")
print(f" Resets at: {limits.rate_limit['sync']['resetAt']}")
print(f" Is limited: {limits.rate_limit['sync']['isLimited']}")
print("\nAsync requests:")
print(f" Limit: {limits.rate_limit['async']['limit']}")
print(f" Remaining: {limits.rate_limit['async']['remaining']}")
print(f" Resets at: {limits.rate_limit['async']['resetAt']}")
print(f" Is limited: {limits.rate_limit['async']['isLimited']}")
print("\n=== Usage ===")
print(f"Current period cost: ${limits.usage['currentPeriodCost']:.2f}")
print(f"Limit: ${limits.usage['limit']:.2f}")
print(f"Plan: {limits.usage['plan']}")
percent_used = (limits.usage['currentPeriodCost'] / limits.usage['limit']) * 100
print(f"Usage: {percent_used:.1f}%")
if percent_used > 80:
print("⚠️ Warning: You are approaching your usage limit!")
except Exception as error:
print(f"Error checking usage: {error}")
check_usage()
```
### Streaming-Workflow-Ausführung
Führe Workflows mit Echtzeit-Streaming-Antworten aus:
```python
from simstudio import SimStudioClient
import os
client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))
def execute_with_streaming():
"""Execute workflow with streaming enabled."""
try:
# Enable streaming for specific block outputs
result = client.execute_workflow(
"workflow-id",
input_data={"message": "Count to five"},
stream=True,
selected_outputs=["agent1.content"] # Use blockName.attribute format
)
print("Workflow result:", result)
except Exception as error:
print("Error:", error)
execute_with_streaming()
```
Die Streaming-Antwort folgt dem Server-Sent Events (SSE) Format:
```
data: {"blockId":"7b7735b9-19e5-4bd6-818b-46aae2596e9f","chunk":"One"}
data: {"blockId":"7b7735b9-19e5-4bd6-818b-46aae2596e9f","chunk":", two"}
data: {"event":"done","success":true,"output":{},"metadata":{"duration":610}}
data: [DONE]
```
**Flask-Streaming-Beispiel:**
```python
from flask import Flask, Response, stream_with_context
import requests
import json
import os
app = Flask(__name__)
@app.route('/stream-workflow')
def stream_workflow():
"""Stream workflow execution to the client."""
def generate():
response = requests.post(
'https://sim.ai/api/workflows/WORKFLOW_ID/execute',
headers={
'Content-Type': 'application/json',
'X-API-Key': os.getenv('SIM_API_KEY')
},
json={
'message': 'Generate a story',
'stream': True,
'selectedOutputs': ['agent1.content']
},
stream=True
)
for line in response.iter_lines():
if line:
decoded_line = line.decode('utf-8')
if decoded_line.startswith('data: '):
data = decoded_line[6:] # Remove 'data: ' prefix
if data == '[DONE]':
break
try:
parsed = json.loads(data)
if 'chunk' in parsed:
yield f"data: {json.dumps(parsed)}\n\n"
elif parsed.get('event') == 'done':
yield f"data: {json.dumps(parsed)}\n\n"
print("Execution complete:", parsed.get('metadata'))
except json.JSONDecodeError:
pass
return Response(
stream_with_context(generate()),
mimetype='text/event-stream'
)
if __name__ == '__main__':
app.run(debug=True)
```
### Umgebungskonfiguration
Konfiguriere den Client mit Umgebungsvariablen:
<Tabs items={['Development', 'Production']}>
<Tab value="Development">
```python
import os
from simstudio import SimStudioClient
# Development configuration
client = SimStudioClient(
api_key=os.getenv("SIM_API_KEY")
base_url=os.getenv("SIM_BASE_URL", "https://sim.ai")
)
```
</Tab>
<Tab value="Production">
```python
import os
from simstudio import SimStudioClient
# Production configuration with error handling
api_key = os.getenv("SIM_API_KEY")
if not api_key:
raise ValueError("SIM_API_KEY environment variable is required")
client = SimStudioClient(
api_key=api_key,
base_url=os.getenv("SIM_BASE_URL", "https://sim.ai")
)
```
</Tab>
</Tabs>
## API-Schlüssel erhalten
<Steps>
<Step title="Bei Sim anmelden">
Navigiere zu [Sim](https://sim.ai) und melde dich bei deinem Konto an.
</Step>
<Step title="Öffne deinen Workflow">
Navigiere zu dem Workflow, den du programmatisch ausführen möchtest.
</Step>
<Step title="Deploye deinen Workflow">
Klicke auf "Deploy", um deinen Workflow zu deployen, falls dies noch nicht geschehen ist.
</Step>
<Step title="Erstelle oder wähle einen API-Schlüssel">
Wähle während des Deployment-Prozesses einen API-Schlüssel aus oder erstelle einen neuen.
</Step>
<Step title="Kopiere den API-Schlüssel">
Kopiere den API-Schlüssel zur Verwendung in deiner Python-Anwendung.
</Step>
</Steps>
## Anforderungen
- Python 3.8+
- requests >= 2.25.0
## Lizenz
Apache-2.0