Files
sim/apps/docs/content/docs/tools/qdrant.mdx
Waleed Latif b253454723 feat(tools): added hunter.io tools/block, added default values of first option in dropdowns to avoid operation selector issue, added descriptions & param validation & updated docs (#825)
* feat(tools): added hunter.io tools/block, added default values of first option in dropdowns to avoid operation selector issue

* fix

* added description for all outputs, fixed param validation for tools

* cleanup

* add dual validation, once during serialization and once during execution

* improvement(docs): add base exec charge info to docs (#826)

* improvement(doc-tags-subblock): use table for doc tags subblock in create_document tool for KB (#827)

* improvement(doc-tags-subblock): use table for doc tags create doc tool in KB block

* enforce max tags

* remove red warning text

* fix(bugs): fixed rb2b csp, fixed overly-verbose logs, fixed x URLs (#828)

Co-authored-by: waleedlatif <waleedlatif@waleedlatifs-MacBook-Pro.local>

* fixed serialization errors to appear like execution errors, also fixed contrast on cmdk modal

* fixed required for tools, added tag dropdown for kb tags

* fix remaining tools with required fields

* update utils

* update docs

* fix kb tags

* fix types for exa

* lint

* updated contributing guide + pr template

* Test pre-commit hook with linting

* Test pre-commit hook again

* remove test files

* fixed wealthbox tool

* update telemetry endpoints

---------

Co-authored-by: waleedlatif <waleedlatif@waleedlatifs-MacBook-Pro.local>
Co-authored-by: Vikhyath Mondreti <vikhyathvikku@gmail.com>
2025-07-30 23:36:44 -07:00

190 lines
6.8 KiB
Plaintext

---
title: Qdrant
description: Use Qdrant vector database
---
import { BlockInfoCard } from "@/components/ui/block-info-card"
<BlockInfoCard
type="qdrant"
color="#1A223F"
icon={true}
iconSvg={`<svg className="block-icon" fill='none' viewBox='0 0 49 56' xmlns='http://www.w3.org/2000/svg'>
<g clipPath='url(#b)'>
<path
d='m38.489 51.477-1.1167-30.787-2.0223-8.1167 13.498 1.429v37.242l-8.2456 4.7589-2.1138-4.5259z'
clipRule='evenodd'
fill='#24386C'
fillRule='evenodd'
/>
<path
d='m48.847 14-8.2457 4.7622-17.016-3.7326-19.917 8.1094-3.3183-9.139 12.122-7 12.126-7 12.123 7 12.126 7z'
clipRule='evenodd'
fill='#7589BE'
fillRule='evenodd'
/>
<path
d='m0.34961 13.999 8.2457 4.7622 4.7798 14.215 16.139 12.913-4.9158 10.109-12.126-7.0004-12.123-7v-28z'
clipRule='evenodd'
fill='#B2BFE8'
fillRule='evenodd'
/>
<path
d='m30.066 38.421-5.4666 8.059v9.5207l7.757-4.4756 3.9968-5.9681'
clipRule='evenodd'
fill='#24386C'
fillRule='evenodd'
/>
<path
d='m24.602 36.962-7.7603-13.436 1.6715-4.4531 6.3544-3.0809 7.488 7.5343-7.7536 13.436z'
clipRule='evenodd'
fill='#7589BE'
fillRule='evenodd'
/>
<path
d='m16.843 23.525 7.7569 4.4756v8.9585l-7.1741 0.3087-4.3397-5.5412 3.7569-8.2016z'
clipRule='evenodd'
fill='#B2BFE8'
fillRule='evenodd'
/>
<path
d='m24.6 28 7.757-4.4752 5.2792 8.7903-6.3886 5.2784-6.6476-0.6346v-8.9589z'
clipRule='evenodd'
fill='#24386C'
fillRule='evenodd'
/>
<path
d='m32.355 51.524 8.2457 4.476v-37.238l-8.0032-4.6189-7.9995-4.6189-8.0031 4.6189-7.9995 4.6189v18.479l7.9995 4.6189 8.0031 4.6193 7.757-4.4797v9.5244zm0-19.045-7.757 4.4793-7.7569-4.4793v-8.9549l7.7569-4.4792 7.757 4.4792v8.9549z'
clipRule='evenodd'
fill='#DC244C'
fillRule='evenodd'
/>
<path d='m24.603 46.483v-9.5222l-7.7166-4.4411v9.5064l7.7166 4.4569z' fill='url(#a)' />
</g>
<defs>
<linearGradient
id='a'
x1='23.18'
x2='15.491'
y1='38.781'
y2='38.781'
gradientUnits='userSpaceOnUse'
>
<stop stopColor='#FF3364' offset='0' />
<stop stopColor='#C91540' stopOpacity='0' offset='1' />
</linearGradient>
<clipPath id='b'>
<rect transform='translate(.34961)' fill='#fff' />
</clipPath>
</defs>
</svg>`}
/>
{/* MANUAL-CONTENT-START:intro */}
[Qdrant](https://qdrant.tech) is an open-source vector database designed for efficient storage, management, and retrieval of high-dimensional vector embeddings. Qdrant enables fast and scalable semantic search, making it ideal for AI applications that require similarity search, recommendation systems, and contextual information retrieval.
With Qdrant, you can:
- **Store vector embeddings**: Efficiently manage and persist high-dimensional vectors at scale
- **Perform semantic similarity search**: Find the most similar vectors to a query vector in real time
- **Filter and organize data**: Use advanced filtering to narrow down search results based on metadata or payload
- **Fetch specific points**: Retrieve vectors and their associated payloads by ID
- **Scale seamlessly**: Handle large collections and high-throughput workloads
In Sim, the Qdrant integration enables your agents to interact with Qdrant programmatically as part of their workflows. Supported operations include:
- **Upsert**: Insert or update points (vectors and payloads) in a Qdrant collection
- **Search**: Perform similarity search to find vectors most similar to a given query vector, with optional filtering and result customization
- **Fetch**: Retrieve specific points from a collection by their IDs, with options to include payloads and vectors
This integration allows your agents to leverage powerful vector search and management capabilities, enabling advanced automation scenarios such as semantic search, recommendation, and contextual retrieval. By connecting Sim with Qdrant, you can build agents that understand context, retrieve relevant information from large datasets, and deliver more intelligent and personalized responses—all without managing complex infrastructure.
{/* MANUAL-CONTENT-END */}
## Usage Instructions
Store, search, and retrieve vector embeddings using Qdrant. Perform semantic similarity searches and manage your vector collections.
## Tools
### `qdrant_upsert_points`
Insert or update points in a Qdrant collection
#### Input
| Parameter | Type | Required | Description |
| --------- | ---- | -------- | ----------- |
| `url` | string | Yes | Qdrant base URL |
| `apiKey` | string | No | Qdrant API key \(optional\) |
| `collection` | string | Yes | Collection name |
| `points` | array | Yes | Array of points to upsert |
#### Output
| Parameter | Type | Description |
| --------- | ---- | ----------- |
| `matches` | any | Search matches |
| `upsertedCount` | any | Upserted count |
| `data` | any | Response data |
| `status` | any | Operation status |
### `qdrant_search_vector`
Search for similar vectors in a Qdrant collection
#### Input
| Parameter | Type | Required | Description |
| --------- | ---- | -------- | ----------- |
| `url` | string | Yes | Qdrant base URL |
| `apiKey` | string | No | Qdrant API key \(optional\) |
| `collection` | string | Yes | Collection name |
| `vector` | array | Yes | Vector to search for |
| `limit` | number | No | Number of results to return |
| `filter` | object | No | Filter to apply to the search |
| `with_payload` | boolean | No | Include payload in response |
| `with_vector` | boolean | No | Include vector in response |
#### Output
| Parameter | Type | Description |
| --------- | ---- | ----------- |
| `matches` | any | Search matches |
| `upsertedCount` | any | Upserted count |
| `data` | any | Response data |
| `status` | any | Operation status |
### `qdrant_fetch_points`
Fetch points by ID from a Qdrant collection
#### Input
| Parameter | Type | Required | Description |
| --------- | ---- | -------- | ----------- |
| `url` | string | Yes | Qdrant base URL |
| `apiKey` | string | No | Qdrant API key \(optional\) |
| `collection` | string | Yes | Collection name |
| `ids` | array | Yes | Array of point IDs to fetch |
| `with_payload` | boolean | No | Include payload in response |
| `with_vector` | boolean | No | Include vector in response |
#### Output
| Parameter | Type | Description |
| --------- | ---- | ----------- |
| `matches` | any | Search matches |
| `upsertedCount` | any | Upserted count |
| `data` | any | Response data |
| `status` | any | Operation status |
## Notes
- Category: `tools`
- Type: `qdrant`