mirror of
https://github.com/simstudioai/sim.git
synced 2026-02-10 14:45:16 -05:00
* feat(tools): added calcom * added more triggers, tested * updated regex in script for release to be more lenient * fix(tag-dropdown): performance improvements and scroll bug fixes - Add flatTagIndexMap for O(1) tag lookups (replaces O(n²) findIndex calls) - Memoize caret position calculation to avoid DOM manipulation on every render - Use refs for inputValue/cursorPosition to keep handleTagSelect callback stable - Change itemRefs from index-based to tag-based keys to prevent stale refs - Fix scroll jump in nested folders by removing scroll reset from registerFolder - Add onFolderEnter callback for scroll reset when entering folder via keyboard - Disable keyboard navigation wrap-around at boundaries - Simplify selection reset to single effect on flatTagList.length change Also: - Add safeCompare utility for timing-safe string comparison - Refactor webhook signature validation to use safeCompare Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com> * updated types * fix(calcom): simplify required field constraints for booking attendee The condition field already restricts these to calcom_create_booking, so simplified to required: true. Per Cal.com API docs, email is optional while name and timeZone are required. Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com> * added tests * updated folder multi select, updated calcom and github tools and docs generator script * updated drag, updated outputs for tools, regen docs with nested docs script * updated setup instructions links, destructure trigger outputs, fix text subblock styling * updated docs gen script * updated docs script * updated docs script * updated script * remove destructuring of stripe webhook * expanded wand textarea, updated calcom tools --------- Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
161 lines
6.6 KiB
Plaintext
161 lines
6.6 KiB
Plaintext
---
|
|
title: Pinecone
|
|
description: Use Pinecone vector database
|
|
---
|
|
|
|
import { BlockInfoCard } from "@/components/ui/block-info-card"
|
|
|
|
<BlockInfoCard
|
|
type="pinecone"
|
|
color="#0D1117"
|
|
/>
|
|
|
|
{/* MANUAL-CONTENT-START:intro */}
|
|
[Pinecone](https://www.pinecone.io) is a vector database designed for building high-performance vector search applications. It enables efficient storage, management, and similarity search of high-dimensional vector embeddings, making it ideal for AI applications that require semantic search capabilities.
|
|
|
|
With Pinecone, you can:
|
|
|
|
- **Store vector embeddings**: Efficiently manage high-dimensional vectors at scale
|
|
- **Perform similarity search**: Find the most similar vectors to a query vector in milliseconds
|
|
- **Build semantic search**: Create search experiences based on meaning rather than keywords
|
|
- **Implement recommendation systems**: Generate personalized recommendations based on content similarity
|
|
- **Deploy machine learning models**: Operationalize ML models that rely on vector similarity
|
|
- **Scale seamlessly**: Handle billions of vectors with consistent performance
|
|
- **Maintain real-time indexes**: Update your vector database in real-time as new data arrives
|
|
|
|
In Sim, the Pinecone integration enables your agents to leverage vector search capabilities programmatically as part of their workflows. This allows for sophisticated automation scenarios that combine natural language processing with semantic search and retrieval. Your agents can generate embeddings from text, store these vectors in Pinecone indexes, and perform similarity searches to find the most relevant information. This integration bridges the gap between your AI workflows and vector search infrastructure, enabling more intelligent information retrieval based on semantic meaning rather than exact keyword matching. By connecting Sim with Pinecone, you can create agents that understand context, retrieve relevant information from large datasets, and deliver more accurate and personalized responses to users - all without requiring complex infrastructure management or specialized knowledge of vector databases.
|
|
{/* MANUAL-CONTENT-END */}
|
|
|
|
|
|
## Usage Instructions
|
|
|
|
Integrate Pinecone into the workflow. Can generate embeddings, upsert text, search with text, fetch vectors, and search with vectors.
|
|
|
|
|
|
|
|
## Tools
|
|
|
|
### `pinecone_generate_embeddings`
|
|
|
|
Generate embeddings from text using Pinecone
|
|
|
|
#### Input
|
|
|
|
| Parameter | Type | Required | Description |
|
|
| --------- | ---- | -------- | ----------- |
|
|
| `model` | string | Yes | Model to use for generating embeddings |
|
|
| `inputs` | array | Yes | Array of text inputs to generate embeddings for |
|
|
| `apiKey` | string | Yes | Pinecone API key |
|
|
|
|
#### Output
|
|
|
|
| Parameter | Type | Description |
|
|
| --------- | ---- | ----------- |
|
|
| `data` | array | Generated embeddings data with values and vector type |
|
|
| `model` | string | Model used for generating embeddings |
|
|
| `vector_type` | string | Type of vector generated \(dense/sparse\) |
|
|
| `usage` | object | Usage statistics for embeddings generation |
|
|
|
|
### `pinecone_upsert_text`
|
|
|
|
Insert or update text records in a Pinecone index
|
|
|
|
#### Input
|
|
|
|
| Parameter | Type | Required | Description |
|
|
| --------- | ---- | -------- | ----------- |
|
|
| `indexHost` | string | Yes | Full Pinecone index host URL |
|
|
| `namespace` | string | Yes | Namespace to upsert records into |
|
|
| `records` | array | Yes | Record or array of records to upsert, each containing _id, text, and optional metadata |
|
|
| `apiKey` | string | Yes | Pinecone API key |
|
|
|
|
#### Output
|
|
|
|
| Parameter | Type | Description |
|
|
| --------- | ---- | ----------- |
|
|
| `statusText` | string | Status of the upsert operation |
|
|
|
|
### `pinecone_search_text`
|
|
|
|
Search for similar text in a Pinecone index
|
|
|
|
#### Input
|
|
|
|
| Parameter | Type | Required | Description |
|
|
| --------- | ---- | -------- | ----------- |
|
|
| `indexHost` | string | Yes | Full Pinecone index host URL |
|
|
| `namespace` | string | No | Namespace to search in |
|
|
| `searchQuery` | string | Yes | Text to search for |
|
|
| `topK` | string | No | Number of results to return |
|
|
| `fields` | array | No | Fields to return in the results |
|
|
| `filter` | object | No | Filter to apply to the search |
|
|
| `rerank` | object | No | Reranking parameters |
|
|
| `apiKey` | string | Yes | Pinecone API key |
|
|
|
|
#### Output
|
|
|
|
| Parameter | Type | Description |
|
|
| --------- | ---- | ----------- |
|
|
| `matches` | array | Search results with ID, score, and metadata |
|
|
| ↳ `id` | string | Vector ID |
|
|
| ↳ `score` | number | Similarity score |
|
|
| ↳ `metadata` | object | Associated metadata |
|
|
| `usage` | object | Usage statistics including tokens, read units, and rerank units |
|
|
| ↳ `total_tokens` | number | Total tokens used for embedding |
|
|
| ↳ `read_units` | number | Read units consumed |
|
|
| ↳ `rerank_units` | number | Rerank units used |
|
|
|
|
### `pinecone_search_vector`
|
|
|
|
Search for similar vectors in a Pinecone index
|
|
|
|
#### Input
|
|
|
|
| Parameter | Type | Required | Description |
|
|
| --------- | ---- | -------- | ----------- |
|
|
| `indexHost` | string | Yes | Full Pinecone index host URL |
|
|
| `namespace` | string | No | Namespace to search in |
|
|
| `vector` | array | Yes | Vector to search for |
|
|
| `topK` | number | No | Number of results to return |
|
|
| `filter` | object | No | Filter to apply to the search |
|
|
| `includeValues` | boolean | No | Include vector values in response |
|
|
| `includeMetadata` | boolean | No | Include metadata in response |
|
|
| `apiKey` | string | Yes | Pinecone API key |
|
|
|
|
#### Output
|
|
|
|
| Parameter | Type | Description |
|
|
| --------- | ---- | ----------- |
|
|
| `matches` | array | Vector search results with ID, score, values, and metadata |
|
|
| `namespace` | string | Namespace where the search was performed |
|
|
|
|
### `pinecone_fetch`
|
|
|
|
Fetch vectors by ID from a Pinecone index
|
|
|
|
#### Input
|
|
|
|
| Parameter | Type | Required | Description |
|
|
| --------- | ---- | -------- | ----------- |
|
|
| `indexHost` | string | Yes | Full Pinecone index host URL |
|
|
| `ids` | array | Yes | Array of vector IDs to fetch |
|
|
| `namespace` | string | No | Namespace to fetch vectors from |
|
|
| `apiKey` | string | Yes | Pinecone API key |
|
|
|
|
#### Output
|
|
|
|
| Parameter | Type | Description |
|
|
| --------- | ---- | ----------- |
|
|
| `matches` | array | Fetched vectors with ID, values, metadata, and score |
|
|
| ↳ `id` | string | Vector ID |
|
|
| ↳ `values` | array | Vector values |
|
|
| ↳ `metadata` | object | Associated metadata |
|
|
| ↳ `score` | number | Match score \(1.0 for exact matches\) |
|
|
| `data` | array | Vector data with values and vector type |
|
|
| ↳ `values` | array | Vector values |
|
|
| ↳ `vector_type` | string | Vector type \(dense/sparse\) |
|
|
| `usage` | object | Usage statistics including total read units |
|
|
| ↳ `total_tokens` | number | Read units consumed |
|
|
|
|
|