Files
tfhe-rs/tfhe-benchmark/benches/high_level_api/erc20.rs

1081 lines
34 KiB
Rust

#[cfg(feature = "gpu")]
use benchmark::utilities::{configure_gpu, get_param_type, ParamType};
use benchmark::utilities::{get_bench_type, write_to_json, BenchmarkType, OperatorType};
use criterion::measurement::WallTime;
use criterion::{BenchmarkGroup, Criterion, Throughput};
use rand::prelude::*;
use rand::thread_rng;
#[cfg(not(feature = "hpu"))]
use rayon::prelude::*;
#[cfg(not(feature = "hpu"))]
use std::ops::Mul;
use std::ops::{Add, Sub};
#[cfg(feature = "gpu")]
use tfhe::core_crypto::gpu::get_number_of_gpus;
use tfhe::keycache::NamedParam;
use tfhe::prelude::*;
#[cfg(feature = "gpu")]
use tfhe::GpuIndex;
use tfhe::{set_server_key, ClientKey, CompressedServerKey, FheBool, FheUint64};
/// Transfer as written in the original FHEvm white-paper,
/// it uses a comparison to check if the sender has enough,
/// and cmuxes based on the comparison result
pub fn transfer_whitepaper<FheType>(
from_amount: &FheType,
to_amount: &FheType,
amount: &FheType,
) -> (FheType, FheType)
where
FheType: Add<Output = FheType> + for<'a> FheOrd<&'a FheType>,
FheBool: IfThenElse<FheType>,
for<'a> &'a FheType: Add<Output = FheType> + Sub<Output = FheType>,
{
let has_enough_funds = (from_amount).ge(amount);
let mut new_to_amount = to_amount + amount;
new_to_amount = has_enough_funds.if_then_else(&new_to_amount, to_amount);
let mut new_from_amount = from_amount - amount;
new_from_amount = has_enough_funds.if_then_else(&new_from_amount, from_amount);
(new_from_amount, new_to_amount)
}
/// Parallel variant of [`transfer_whitepaper`].
pub fn par_transfer_whitepaper<FheType>(
from_amount: &FheType,
to_amount: &FheType,
amount: &FheType,
) -> (FheType, FheType)
where
FheType: Add<Output = FheType> + for<'a> FheOrd<&'a FheType> + Send + Sync,
FheBool: IfThenElse<FheType>,
for<'a> &'a FheType: Add<Output = FheType> + Sub<Output = FheType>,
{
let has_enough_funds = (from_amount).ge(amount);
let (new_to_amount, new_from_amount) = rayon::join(
|| {
let new_to_amount = to_amount + amount;
has_enough_funds.if_then_else(&new_to_amount, to_amount)
},
|| {
let new_from_amount = from_amount - amount;
has_enough_funds.if_then_else(&new_from_amount, from_amount)
},
);
(new_from_amount, new_to_amount)
}
/// This one also uses a comparison, but it leverages the 'boolean' multiplication
/// instead of cmuxes, so it is faster
#[cfg(all(feature = "gpu", not(feature = "hpu")))]
fn transfer_no_cmux<FheType>(
from_amount: &FheType,
to_amount: &FheType,
amount: &FheType,
) -> (FheType, FheType)
where
FheType: Add<Output = FheType> + CastFrom<FheBool> + for<'a> FheOrd<&'a FheType> + Send + Sync,
FheBool: IfThenElse<FheType>,
for<'a> &'a FheType:
Add<Output = FheType> + Sub<Output = FheType> + Mul<FheType, Output = FheType>,
{
let has_enough_funds = (from_amount).ge(amount);
let amount = amount * FheType::cast_from(has_enough_funds);
let new_to_amount = to_amount + &amount;
let new_from_amount = from_amount - &amount;
(new_from_amount, new_to_amount)
}
/// Parallel variant of [`transfer_no_cmux`].
#[cfg(not(feature = "hpu"))]
fn par_transfer_no_cmux<FheType>(
from_amount: &FheType,
to_amount: &FheType,
amount: &FheType,
) -> (FheType, FheType)
where
FheType: Add<Output = FheType> + CastFrom<FheBool> + for<'a> FheOrd<&'a FheType> + Send + Sync,
FheBool: IfThenElse<FheType>,
for<'a> &'a FheType:
Add<Output = FheType> + Sub<Output = FheType> + Mul<FheType, Output = FheType>,
{
let has_enough_funds = (from_amount).ge(amount);
let amount = amount * FheType::cast_from(has_enough_funds);
let (new_to_amount, new_from_amount) =
rayon::join(|| to_amount + &amount, || from_amount - &amount);
(new_from_amount, new_to_amount)
}
/// This one uses overflowing sub to remove the need for comparison
/// it also uses the 'boolean' multiplication
#[cfg(all(feature = "gpu", not(feature = "hpu")))]
fn transfer_overflow<FheType>(
from_amount: &FheType,
to_amount: &FheType,
amount: &FheType,
) -> (FheType, FheType)
where
FheType: CastFrom<FheBool> + for<'a> FheOrd<&'a FheType> + Send + Sync,
FheBool: IfThenElse<FheType>,
for<'a> &'a FheType: Add<FheType, Output = FheType>
+ OverflowingSub<&'a FheType, Output = FheType>
+ Mul<FheType, Output = FheType>,
{
let (new_from, did_not_have_enough) = (from_amount).overflowing_sub(amount);
let new_from_amount = did_not_have_enough.if_then_else(from_amount, &new_from);
let had_enough_funds = !did_not_have_enough;
let new_to_amount = to_amount + (amount * FheType::cast_from(had_enough_funds));
(new_from_amount, new_to_amount)
}
/// Parallel variant of [`transfer_overflow`].
#[cfg(not(feature = "hpu"))]
fn par_transfer_overflow<FheType>(
from_amount: &FheType,
to_amount: &FheType,
amount: &FheType,
) -> (FheType, FheType)
where
FheType: CastFrom<FheBool> + for<'a> FheOrd<&'a FheType> + Send + Sync,
FheBool: IfThenElse<FheType>,
for<'a> &'a FheType: Add<FheType, Output = FheType>
+ OverflowingSub<&'a FheType, Output = FheType>
+ Mul<FheType, Output = FheType>,
{
let (new_from, did_not_have_enough) = (from_amount).overflowing_sub(amount);
let did_not_have_enough = &did_not_have_enough;
let had_enough_funds = !did_not_have_enough;
let (new_from_amount, new_to_amount) = rayon::join(
|| did_not_have_enough.if_then_else(from_amount, &new_from),
|| to_amount + (amount * FheType::cast_from(had_enough_funds)),
);
(new_from_amount, new_to_amount)
}
/// This ones uses both overflowing_add/sub to check that both
/// the sender has enough funds, and the receiver will not overflow its balance
#[cfg(all(feature = "gpu", not(feature = "hpu")))]
fn transfer_safe<FheType>(
from_amount: &FheType,
to_amount: &FheType,
amount: &FheType,
) -> (FheType, FheType)
where
FheType: Send + Sync,
for<'a> &'a FheType: OverflowingSub<&'a FheType, Output = FheType>
+ OverflowingAdd<&'a FheType, Output = FheType>,
FheBool: IfThenElse<FheType>,
{
let (new_from, did_not_have_enough_funds) = (from_amount).overflowing_sub(amount);
let (new_to, did_not_have_enough_space) = (to_amount).overflowing_add(amount);
let something_not_ok = did_not_have_enough_funds | did_not_have_enough_space;
let new_from_amount = something_not_ok.if_then_else(from_amount, &new_from);
let new_to_amount = something_not_ok.if_then_else(to_amount, &new_to);
(new_from_amount, new_to_amount)
}
/// Parallel variant of [`transfer_safe`].
#[cfg(not(feature = "hpu"))]
fn par_transfer_safe<FheType>(
from_amount: &FheType,
to_amount: &FheType,
amount: &FheType,
) -> (FheType, FheType)
where
FheType: Send + Sync,
for<'a> &'a FheType: OverflowingSub<&'a FheType, Output = FheType>
+ OverflowingAdd<&'a FheType, Output = FheType>,
FheBool: IfThenElse<FheType>,
{
let ((new_from, did_not_have_enough_funds), (new_to, did_not_have_enough_space)) = rayon::join(
|| (from_amount).overflowing_sub(amount),
|| (to_amount).overflowing_add(amount),
);
let something_not_ok = did_not_have_enough_funds | did_not_have_enough_space;
let (new_from_amount, new_to_amount) = rayon::join(
|| something_not_ok.if_then_else(from_amount, &new_from),
|| something_not_ok.if_then_else(to_amount, &new_to),
);
(new_from_amount, new_to_amount)
}
#[cfg(feature = "hpu")]
/// This one use a dedicated IOp inside Hpu
fn transfer_hpu<FheType>(
from_amount: &FheType,
to_amount: &FheType,
amount: &FheType,
) -> (FheType, FheType)
where
FheType: FheHpu,
{
use tfhe::tfhe_hpu_backend::prelude::hpu_asm;
let src = HpuHandle {
native: vec![from_amount, to_amount, amount],
boolean: vec![],
imm: vec![],
};
let mut res_handle = FheHpu::iop_exec(&hpu_asm::iop::IOP_ERC_20, src);
// Iop erc_20 return new_from, new_to
let new_to = res_handle.native.pop().unwrap();
let new_from = res_handle.native.pop().unwrap();
(new_from, new_to)
}
#[cfg(feature = "hpu")]
/// This one use a dedicated IOp inside Hpu
fn transfer_hpu_simd<FheType>(
from_amount: &Vec<FheType>,
to_amount: &Vec<FheType>,
amount: &Vec<FheType>,
) -> Vec<FheType>
where
FheType: FheHpu,
{
use tfhe::tfhe_hpu_backend::prelude::hpu_asm;
let src = HpuHandle {
native: vec![from_amount, to_amount, amount]
.into_iter()
.flatten()
.collect(),
boolean: vec![],
imm: vec![],
};
let res_handle = FheHpu::iop_exec(&hpu_asm::iop::IOP_ERC_20_SIMD, src);
// Iop erc_20 return new_from, new_to
let res = res_handle.native;
res
}
#[cfg(all(feature = "pbs-stats", not(feature = "hpu")))]
mod pbs_stats {
use super::*;
use std::fs::{File, OpenOptions};
use std::io::Write;
use std::path::Path;
fn write_result(file: &mut File, name: &str, value: usize) {
let line = format!("{name},{value}\n");
let error_message = format!("cannot write {name} result into file");
file.write_all(line.as_bytes()).expect(&error_message);
}
pub fn print_transfer_pbs_counts<FheType, F>(
client_key: &ClientKey,
type_name: &str,
fn_name: &str,
transfer_func: F,
) where
FheType: FheEncrypt<u64, ClientKey>,
F: for<'a> Fn(&'a FheType, &'a FheType, &'a FheType) -> (FheType, FheType),
{
let mut rng = thread_rng();
let from_amount = FheType::encrypt(rng.gen::<u64>(), client_key);
let to_amount = FheType::encrypt(rng.gen::<u64>(), client_key);
let amount = FheType::encrypt(rng.gen::<u64>(), client_key);
#[cfg(feature = "gpu")]
configure_gpu(client_key);
tfhe::reset_pbs_count();
let (_, _) = transfer_func(&from_amount, &to_amount, &amount);
let count = tfhe::get_pbs_count();
println!("ERC20 transfer/{fn_name}::{type_name}: {count} PBS");
let params = client_key.computation_parameters();
let params_name = params.name();
let test_name = if cfg!(feature = "gpu") {
format!("hlapi::cuda::erc20::pbs_count::{fn_name}::{params_name}::{type_name}")
} else {
format!("hlapi::erc20::pbs_count::{fn_name}::{params_name}::{type_name}")
};
let results_file = Path::new("erc20_pbs_count.csv");
if !results_file.exists() {
File::create(results_file).expect("create results file failed");
}
let mut file = OpenOptions::new()
.append(true)
.open(results_file)
.expect("cannot open results file");
write_result(&mut file, &test_name, count as usize);
write_to_json::<u64, _>(
&test_name,
params,
params_name,
"pbs-count",
&OperatorType::Atomic,
0,
vec![],
);
}
}
fn bench_transfer_latency<FheType, F>(
c: &mut BenchmarkGroup<'_, WallTime>,
client_key: &ClientKey,
bench_name: &str,
type_name: &str,
fn_name: &str,
transfer_func: F,
) where
FheType: FheEncrypt<u64, ClientKey>,
FheType: FheWait,
F: for<'a> Fn(&'a FheType, &'a FheType, &'a FheType) -> (FheType, FheType),
{
#[cfg(feature = "gpu")]
configure_gpu(client_key);
let params = client_key.computation_parameters();
let params_name = params.name();
let bench_id = format!("{bench_name}::{fn_name}::{params_name}::{type_name}");
c.bench_function(&bench_id, |b| {
let mut rng = thread_rng();
let from_amount = FheType::encrypt(rng.gen::<u64>(), client_key);
let to_amount = FheType::encrypt(rng.gen::<u64>(), client_key);
let amount = FheType::encrypt(rng.gen::<u64>(), client_key);
b.iter(|| {
let (new_from, new_to) = transfer_func(&from_amount, &to_amount, &amount);
new_from.wait();
criterion::black_box(new_from);
new_to.wait();
criterion::black_box(new_to);
})
});
write_to_json::<u64, _>(
&bench_id,
params,
params_name,
"erc20-transfer",
&OperatorType::Atomic,
64,
vec![],
);
}
#[cfg(feature = "hpu")]
fn bench_transfer_latency_simd<FheType, F>(
c: &mut BenchmarkGroup<'_, WallTime>,
client_key: &ClientKey,
bench_name: &str,
type_name: &str,
fn_name: &str,
transfer_func: F,
) where
FheType: FheEncrypt<u64, ClientKey>,
FheType: FheWait,
F: for<'a> Fn(&'a Vec<FheType>, &'a Vec<FheType>, &'a Vec<FheType>) -> Vec<FheType>,
{
use tfhe::tfhe_hpu_backend::prelude::hpu_asm;
let hpu_simd_n = hpu_asm::iop::IOP_ERC_20_SIMD
.format()
.unwrap()
.proto
.src
.len()
/ 3;
let params = client_key.computation_parameters();
let params_name = params.name();
let bench_id = format!("{bench_name}::{fn_name}::{params_name}::{type_name}");
c.bench_function(&bench_id, |b| {
let mut rng = thread_rng();
let mut from_amounts: Vec<FheType> = vec![];
let mut to_amounts: Vec<FheType> = vec![];
let mut amounts: Vec<FheType> = vec![];
for _i in 0..hpu_simd_n {
let from_amount = FheType::encrypt(rng.gen::<u64>(), client_key);
let to_amount = FheType::encrypt(rng.gen::<u64>(), client_key);
let amount = FheType::encrypt(rng.gen::<u64>(), client_key);
from_amounts.push(from_amount);
to_amounts.push(to_amount);
amounts.push(amount);
}
b.iter(|| {
let res = transfer_func(&from_amounts, &to_amounts, &amounts);
for ct in res {
ct.wait();
criterion::black_box(ct);
}
})
});
write_to_json::<u64, _>(
&bench_id,
params,
params_name,
"erc20-simd-transfer",
&OperatorType::Atomic,
64,
vec![],
);
}
#[cfg(not(any(feature = "gpu", feature = "hpu")))]
fn bench_transfer_throughput<FheType, F>(
group: &mut BenchmarkGroup<'_, WallTime>,
client_key: &ClientKey,
bench_name: &str,
type_name: &str,
fn_name: &str,
transfer_func: F,
) where
FheType: FheEncrypt<u64, ClientKey> + Send + Sync,
F: for<'a> Fn(&'a FheType, &'a FheType, &'a FheType) -> (FheType, FheType) + Sync,
{
let mut rng = thread_rng();
let params = client_key.computation_parameters();
let params_name = params.name();
for num_elems in [10, 100, 500] {
group.throughput(Throughput::Elements(num_elems));
let bench_id = format!(
"{bench_name}::throughput::{fn_name}::{params_name}::{type_name}::{num_elems}_elems"
);
group.bench_with_input(&bench_id, &num_elems, |b, &num_elems| {
let from_amounts = (0..num_elems)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect::<Vec<_>>();
let to_amounts = (0..num_elems)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect::<Vec<_>>();
let amounts = (0..num_elems)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect::<Vec<_>>();
b.iter(|| {
from_amounts
.par_iter()
.zip(to_amounts.par_iter().zip(amounts.par_iter()))
.for_each(|(from_amount, (to_amount, amount))| {
let (_, _) = transfer_func(from_amount, to_amount, amount);
})
})
});
write_to_json::<u64, _>(
&bench_id,
params,
&params_name,
"erc20-transfer",
&OperatorType::Atomic,
64,
vec![],
);
}
}
#[cfg(feature = "gpu")]
fn cuda_bench_transfer_throughput<FheType, F>(
group: &mut BenchmarkGroup<'_, WallTime>,
client_key: &ClientKey,
bench_name: &str,
type_name: &str,
fn_name: &str,
transfer_func: F,
) where
FheType: FheEncrypt<u64, ClientKey> + Send + Sync,
F: for<'a> Fn(&'a FheType, &'a FheType, &'a FheType) -> (FheType, FheType) + Sync,
{
let mut rng = thread_rng();
let num_gpus = get_number_of_gpus() as u64;
let compressed_server_key = CompressedServerKey::new(client_key);
let sks_vec = (0..num_gpus)
.map(|i| compressed_server_key.decompress_to_specific_gpu(GpuIndex::new(i as u32)))
.collect::<Vec<_>>();
let params = client_key.computation_parameters();
let params_name = params.name();
// 200 * num_gpus seems to be enough for maximum throughput on 8xH100 SXM5
let num_elems = 200 * num_gpus;
group.throughput(Throughput::Elements(num_elems));
let bench_id = format!(
"{bench_name}::throughput::{fn_name}::{params_name}::{type_name}::{num_elems}_elems"
);
group.bench_with_input(&bench_id, &num_elems, |b, &num_elems| {
let from_amounts = (0..num_elems)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect::<Vec<_>>();
let to_amounts = (0..num_elems)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect::<Vec<_>>();
let amounts = (0..num_elems)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect::<Vec<_>>();
let num_streams_per_gpu = 8; // Hard coded stream value for FheUint64
let chunk_size = (num_elems / num_gpus) as usize;
b.iter(|| {
from_amounts
.par_chunks(chunk_size) // Split into chunks of num_gpus
.zip(
to_amounts
.par_chunks(chunk_size)
.zip(amounts.par_chunks(chunk_size)),
) // Zip with the other data
.enumerate() // Get the index for GPU
.for_each(
|(i, (from_amount_gpu_i, (to_amount_gpu_i, amount_gpu_i)))| {
// Process chunks within each GPU
let stream_chunk_size = from_amount_gpu_i.len() / num_streams_per_gpu;
from_amount_gpu_i
.par_chunks(stream_chunk_size)
.zip(to_amount_gpu_i.par_chunks(stream_chunk_size))
.zip(amount_gpu_i.par_chunks(stream_chunk_size))
.for_each(|((from_amount_chunk, to_amount_chunk), amount_chunk)| {
// Set the server key for the current GPU
set_server_key(sks_vec[i].clone());
// Parallel iteration over the chunks of data
from_amount_chunk
.iter()
.zip(to_amount_chunk.iter().zip(amount_chunk.iter()))
.for_each(|(from_amount, (to_amount, amount))| {
transfer_func(from_amount, to_amount, amount);
});
});
},
);
});
});
write_to_json::<u64, _>(
&bench_id,
params,
&params_name,
"erc20-transfer",
&OperatorType::Atomic,
64,
vec![],
);
}
#[cfg(feature = "hpu")]
fn hpu_bench_transfer_throughput<FheType, F>(
group: &mut BenchmarkGroup<'_, WallTime>,
client_key: &ClientKey,
bench_name: &str,
type_name: &str,
fn_name: &str,
transfer_func: F,
) where
FheType: FheEncrypt<u64, ClientKey> + Send + Sync,
FheType: FheWait,
F: for<'a> Fn(&'a FheType, &'a FheType, &'a FheType) -> (FheType, FheType) + Sync,
{
let mut rng = thread_rng();
let params = client_key.computation_parameters();
let params_name = params.name();
for num_elems in [10, 100] {
group.throughput(Throughput::Elements(num_elems));
let bench_id = format!(
"{bench_name}::throughput::{fn_name}::{params_name}::{type_name}::{num_elems}_elems"
);
group.bench_with_input(&bench_id, &num_elems, |b, &num_elems| {
let from_amounts = (0..num_elems)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect::<Vec<_>>();
let to_amounts = (0..num_elems)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect::<Vec<_>>();
let amounts = (0..num_elems)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect::<Vec<_>>();
b.iter(|| {
let (last_new_from, last_new_to) = std::iter::zip(
from_amounts.iter(),
std::iter::zip(to_amounts.iter(), amounts.iter()),
)
.map(|(from_amount, (to_amount, amount))| {
transfer_func(from_amount, to_amount, amount)
})
.last()
.unwrap();
// Wait on last result to enforce all computation is over
last_new_from.wait();
criterion::black_box(last_new_from);
last_new_to.wait();
criterion::black_box(last_new_to);
});
});
write_to_json::<u64, _>(
&bench_id,
params,
&params_name,
"erc20-transfer",
&OperatorType::Atomic,
64,
vec![],
);
}
}
#[cfg(feature = "hpu")]
fn hpu_bench_transfer_throughput_simd<FheType, F>(
group: &mut BenchmarkGroup<'_, WallTime>,
client_key: &ClientKey,
bench_name: &str,
type_name: &str,
fn_name: &str,
transfer_func: F,
) where
FheType: FheEncrypt<u64, ClientKey> + Send + Sync,
FheType: FheWait,
F: for<'a> Fn(&'a Vec<FheType>, &'a Vec<FheType>, &'a Vec<FheType>) -> Vec<FheType> + Sync,
{
use tfhe::tfhe_hpu_backend::prelude::hpu_asm;
let hpu_simd_n = hpu_asm::iop::IOP_ERC_20_SIMD
.format()
.unwrap()
.proto
.src
.len()
/ 3;
let mut rng = thread_rng();
let params = client_key.computation_parameters();
let params_name = params.name();
for num_elems in [2, 8] {
let real_num_elems = num_elems * (hpu_simd_n as u64);
group.throughput(Throughput::Elements(real_num_elems));
let bench_id =
format!("{bench_name}::throughput::{fn_name}::{params_name}::{type_name}::{real_num_elems}_elems");
group.bench_with_input(&bench_id, &num_elems, |b, &num_elems| {
let from_amounts = (0..num_elems)
.map(|_| {
(0..hpu_simd_n)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect()
})
.collect::<Vec<_>>();
let to_amounts = (0..num_elems)
.map(|_| {
(0..hpu_simd_n)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect()
})
.collect::<Vec<_>>();
let amounts = (0..num_elems)
.map(|_| {
(0..hpu_simd_n)
.map(|_| FheType::encrypt(rng.gen::<u64>(), client_key))
.collect()
})
.collect::<Vec<_>>();
b.iter(|| {
let last_res_vec = std::iter::zip(
from_amounts.iter(),
std::iter::zip(to_amounts.iter(), amounts.iter()),
)
.map(|(from_amount, (to_amount, amount))| {
transfer_func(from_amount, to_amount, amount)
})
.last()
.unwrap();
// Wait on last result to enforce all computation is over
for ct in last_res_vec {
ct.wait();
criterion::black_box(ct);
}
});
});
write_to_json::<u64, _>(
&bench_id,
params,
&params_name,
"erc20-simd-ransfer",
&OperatorType::Atomic,
64,
vec![],
);
}
}
#[cfg(not(any(feature = "gpu", feature = "hpu")))]
fn main() {
let params = benchmark::params_aliases::BENCH_PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128;
let config = tfhe::ConfigBuilder::with_custom_parameters(params).build();
let cks = ClientKey::generate(config);
let compressed_sks = CompressedServerKey::new(&cks);
let sks = compressed_sks.decompress();
rayon::broadcast(|_| set_server_key(sks.clone()));
set_server_key(sks);
let mut c = Criterion::default().sample_size(10).configure_from_args();
let bench_name = "hlapi::erc20";
// FheUint64 PBS counts
// We don't run multiple times since every input is encrypted
// PBS count is always the same
#[cfg(feature = "pbs-stats")]
{
use crate::pbs_stats::print_transfer_pbs_counts;
print_transfer_pbs_counts(
&cks,
"FheUint64",
"transfer::whitepaper",
par_transfer_whitepaper::<FheUint64>,
);
print_transfer_pbs_counts(
&cks,
"FheUint64",
"no_cmux",
par_transfer_no_cmux::<FheUint64>,
);
print_transfer_pbs_counts(
&cks,
"FheUint64",
"transfer::overflow",
par_transfer_overflow::<FheUint64>,
);
print_transfer_pbs_counts(&cks, "FheUint64", "safe", par_transfer_safe::<FheUint64>);
}
match get_bench_type() {
BenchmarkType::Latency => {
let mut group = c.benchmark_group(bench_name);
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::whitepaper",
par_transfer_whitepaper::<FheUint64>,
);
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::no_cmux",
par_transfer_no_cmux::<FheUint64>,
);
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::overflow",
par_transfer_overflow::<FheUint64>,
);
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::safe",
par_transfer_safe::<FheUint64>,
);
group.finish();
}
BenchmarkType::Throughput => {
let mut group = c.benchmark_group(bench_name);
bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::whitepaper",
par_transfer_whitepaper::<FheUint64>,
);
bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::no_cmux",
par_transfer_no_cmux::<FheUint64>,
);
bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::overflow",
par_transfer_overflow::<FheUint64>,
);
bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::safe",
par_transfer_safe::<FheUint64>,
);
group.finish();
}
};
c.final_summary();
}
#[cfg(feature = "gpu")]
fn main() {
let params: tfhe::shortint::AtomicPatternParameters = match get_param_type() {
ParamType::Classical => {
benchmark::params_aliases::BENCH_PARAM_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128.into()
},
_ => {
benchmark::params_aliases::BENCH_PARAM_GPU_MULTI_BIT_GROUP_4_MESSAGE_2_CARRY_2_KS_PBS_TUNIFORM_2M128.into()
}
};
let config = tfhe::ConfigBuilder::with_custom_parameters(params).build();
let cks = ClientKey::generate(config);
let mut c = Criterion::default().sample_size(10).configure_from_args();
let bench_name = "hlapi::cuda::erc20";
// FheUint64 PBS counts
// We don't run multiple times since every input is encrypted
// PBS count is always the same
#[cfg(feature = "pbs-stats")]
{
use crate::pbs_stats::print_transfer_pbs_counts;
print_transfer_pbs_counts(
&cks,
"FheUint64",
"transfer::whitepaper",
par_transfer_whitepaper::<FheUint64>,
);
print_transfer_pbs_counts(
&cks,
"FheUint64",
"no_cmux",
par_transfer_no_cmux::<FheUint64>,
);
print_transfer_pbs_counts(
&cks,
"FheUint64",
"transfer::overflow",
par_transfer_overflow::<FheUint64>,
);
print_transfer_pbs_counts(&cks, "FheUint64", "safe", par_transfer_safe::<FheUint64>);
}
match get_bench_type() {
BenchmarkType::Latency => {
let mut group = c.benchmark_group(bench_name);
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::whitepaper",
par_transfer_whitepaper::<FheUint64>,
);
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::no_cmux",
par_transfer_no_cmux::<FheUint64>,
);
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::overflow",
par_transfer_overflow::<FheUint64>,
);
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::safe",
par_transfer_safe::<FheUint64>,
);
group.finish();
}
BenchmarkType::Throughput => {
let mut group = c.benchmark_group(bench_name);
cuda_bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::whitepaper",
transfer_whitepaper::<FheUint64>,
);
cuda_bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::no_cmux",
transfer_no_cmux::<FheUint64>,
);
cuda_bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::overflow",
transfer_overflow::<FheUint64>,
);
cuda_bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::safe",
transfer_safe::<FheUint64>,
);
group.finish();
}
};
c.final_summary();
}
#[cfg(feature = "hpu")]
fn main() {
let cks = {
// Hpu is enable, start benchmark on Hpu hw accelerator
use tfhe::tfhe_hpu_backend::prelude::*;
use tfhe::Config;
// Use environment variable to construct path to configuration file
let config_path = ShellString::new(
"${HPU_BACKEND_DIR}/config_store/${HPU_CONFIG}/hpu_config.toml".to_string(),
);
let hpu_device = HpuDevice::from_config(&config_path.expand());
let config = Config::from_hpu_device(&hpu_device);
let cks = ClientKey::generate(config);
let compressed_sks = CompressedServerKey::new(&cks);
set_server_key((hpu_device, compressed_sks));
cks
};
let mut c = Criterion::default().sample_size(10).configure_from_args();
let bench_name = "hlapi::hpu::erc20";
match get_bench_type() {
BenchmarkType::Latency => {
let mut group = c.benchmark_group(bench_name);
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::whitepaper",
transfer_whitepaper::<FheUint64>,
);
// Erc20 optimized instruction only available on Hpu
bench_transfer_latency(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::hpu_optim",
transfer_hpu::<FheUint64>,
);
// Erc20 SIMD instruction only available on Hpu
bench_transfer_latency_simd(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::hpu_simd",
transfer_hpu_simd::<FheUint64>,
);
group.finish();
}
BenchmarkType::Throughput => {
let mut group = c.benchmark_group(bench_name);
hpu_bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::whitepaper",
transfer_whitepaper::<FheUint64>,
);
// Erc20 optimized instruction only available on Hpu
hpu_bench_transfer_throughput(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::hpu_optim",
transfer_hpu::<FheUint64>,
);
// Erc20 SIMD instruction only available on Hpu
hpu_bench_transfer_throughput_simd(
&mut group,
&cks,
bench_name,
"FheUint64",
"transfer::hpu_simd",
transfer_hpu_simd::<FheUint64>,
);
group.finish();
}
};
c.final_summary();
}