Files
tfhe-rs/ci/perf_regression.py
David Testé f8684d1f67 chore(ci): add regression benchmark workflow
Regression benchmarks are meant to be run in pull-request. They
can be launched in two flavors:
 * issue comment: using command like "/bench --backend cpu"
 * adding a label: `bench-perfs-cpu` or `bench-perfs-gpu`

Benchmark definitions are written in TOML and located at
ci/regression.toml.
While not exhaustive, it can be easily modified by reading the
embbeded documentation.

"/bench" commands are parsed by a Python script located at
ci/perf_regression.py. This script produces output files that
contains cargo commands and a shell script generating custom
environment variables. The Python script and generated files are
meant to be used only by the workflow
benchmark_perf_regression.yml.
2025-09-16 13:33:49 +02:00

457 lines
15 KiB
Python

"""
perf_regression
---------------
This script allows zama-ai developers to run performance regression benchmarks.
It is capable of launching any performance benchmarks available in `tfhe-benchmark` crate.
Used in a GitHub action workflow, it can parse an issue comment and generate arguments to be fed
to a `cargo bench` command.
To define what to run and where, a TOML file is used to define targets, check `ci/regression.toml` to have an
explanation of all possible fields.
One can also provide a fully custom profile via the issue comment string see: func:`parse_issue_comment` for details.
This script is also capable of checking for performance regression based on previous benchmarks results.
It works by providing a result file containing the baseline values and the results of the last run.
"""
import argparse
import enum
import pathlib
import sys
import tomllib
parser = argparse.ArgumentParser()
parser.add_argument(
"command",
choices=["parse_profile", "check_regression"],
help="Command to run",
)
parser.add_argument(
"--issue-comment",
dest="issue_comment",
help="GitHub issue comment defining the regression benchmark profile to use",
)
COMMENT_IDENTIFIER = "/bench"
CWD = pathlib.Path(__file__).parent
REPO_ROOT = CWD.parent
PROFILE_DEFINITION_PATH = CWD.joinpath("regression.toml")
BENCH_TARGETS_PATH = REPO_ROOT.joinpath("tfhe-benchmark/Cargo.toml")
# Files generated after parsing an issue comment
GENERATED_COMMANDS_PATH = CWD.joinpath("perf_regression_generated_commands.json")
CUSTOM_ENV_PATH = CWD.joinpath("perf_regression_custom_env.sh")
class ProfileOption(enum.Enum):
Backend = 1
RegressionProfile = 2
Slab = 3
BenchmarkTarget = 4
EnvironmentVariable = 5
@staticmethod
def from_str(label):
match label.lower():
case "backend":
return ProfileOption.Backend
case "profile" | "regression-profile" | "regression_profile":
return ProfileOption.RegressionProfile
case "slab":
return ProfileOption.Slab
case "target":
return ProfileOption.BenchmarkTarget
case "env":
return ProfileOption.EnvironmentVariable
case _:
raise NotImplementedError
class TfheBackend(enum.StrEnum):
Cpu = "cpu"
Gpu = "gpu"
Hpu = "hpu" # Only v80 is supported for now
@staticmethod
def from_str(label):
match label.lower():
case "cpu":
return TfheBackend.Cpu
case "gpu":
return TfheBackend.Gpu
case "hpu":
return TfheBackend.Hpu
case _:
raise NotImplementedError
def parse_toml_file(path):
"""
Parse TOML file.
:param path: path to TOML file
:return: file content as :class:`dict`
"""
try:
return tomllib.loads(pathlib.Path(path).read_text())
except tomllib.TOMLDecodeError as err:
raise RuntimeError(f"failed to parse definition file (error: {err})")
def _parse_bench_targets():
parsed = {}
for item in parse_toml_file(BENCH_TARGETS_PATH)["bench"]:
bench_name = item["name"]
key = bench_name.title().replace("-", "").replace("_", "")
parsed[key] = bench_name
return enum.Enum("TargetOption", parsed)
# This Enum is built at runtime to ensure we have the most up-to-date benchmark targets.
TargetOption = _parse_bench_targets()
class SlabOption(enum.Enum):
Backend = 1
Profile = 2
@staticmethod
def from_str(label):
match label.lower():
case "backend":
return SlabOption.Backend
case "profile":
return SlabOption.Profile
case _:
raise NotImplementedError
class EnvOption(enum.StrEnum):
FastBench = "__TFHE_RS_FAST_BENCH"
BenchOpFlavor = "__TFHE_RS_BENCH_OP_FLAVOR"
BenchType = "__TFHE_RS_BENCH_TYPE"
BenchParamType = "__TFHE_RS_PARAM_TYPE"
BenchParamsSet = "__TFHE_RS_PARAMS_SET"
@staticmethod
def from_str(label):
match label.lower():
case "fast_bench":
return EnvOption.FastBench
case "bench_op_flavor":
return EnvOption.BenchOpFlavor
case "bench_type":
return EnvOption.BenchType
case "bench_param_type":
return EnvOption.BenchParamType
case "bench_params_set":
return EnvOption.BenchParamsSet
case _:
raise NotImplementedError
def _parse_option_content(content):
key, _, value = content.partition("=")
return key, value
class ProfileDefinition:
def __init__(self, tfhe_rs_targets: list[dict]):
"""
Regression profile definition builder capable of generating Cargo commands and custom environment variables for
benchmarks to run.
:param tfhe_rs_targets: parsed TOML from tfhe-benchmark crate containing cargo targets definition
"""
self.backend = None
self.regression_profile = "default"
self.targets = {}
self.slab_backend = None
self.slab_profile = None
self.env_vars = {
EnvOption.FastBench: "false",
EnvOption.BenchOpFlavor: "default",
EnvOption.BenchType: "latency",
EnvOption.BenchParamType: "classical",
EnvOption.BenchParamsSet: "default",
}
# TargetOption.check_targets_consistency(tfhe_rs_targets)
self.tfhe_rs_targets = self._build_tfhe_rs_targets(tfhe_rs_targets)
def __str__(self):
return f"ProfileDefinition(backend={self.backend}, regression_profile={self.regression_profile}, targets={self.targets}, slab_backend={self.slab_backend}, slab_profile={self.slab_profile}, env_vars={self.env_vars})"
def set_field_from_option(self, option: ProfileOption, value: str):
"""
Set a profile definition field based on a user input value.
:param option: profile option field
:param value: profile option value
"""
match option:
case ProfileOption.Backend:
self.backend = TfheBackend.from_str(value)
case ProfileOption.RegressionProfile:
self.regression_profile = value
case ProfileOption.BenchmarkTarget:
key, value = _parse_option_content(value)
for target_option in TargetOption:
if target_option.value == key:
trgt = TargetOption
operations = value.replace(" ", "").split(",")
try:
self.targets[trgt].extend(operations)
except KeyError:
self.targets[trgt] = operations
break
else:
raise KeyError(f"unknown benchmark target `{key}`")
case ProfileOption.Slab:
key, value = _parse_option_content(value)
if key == "backend":
self.slab_backend = value
elif key == "profile":
self.slab_profile = value
case ProfileOption.EnvironmentVariable:
key, value = _parse_option_content(value)
self.env_vars[EnvOption.from_str(key)] = value
case _:
raise NotImplementedError
def set_defaults_from_definitions_file(self, definitions: dict):
"""
Set profile definition fields based on definitions file.
:param definitions: definitions parsed form file.
"""
base_error_msg = "failed to set regression profile values"
if not self.backend:
raise ValueError(f"{base_error_msg}: no backend specified")
try:
backend_defs = definitions[self.backend]
except KeyError:
raise KeyError(
f"{base_error_msg}: no definitions found for `{self.backend}` backend"
)
try:
profile_def = backend_defs[self.regression_profile]
except KeyError:
raise KeyError(
f"{base_error_msg}: no definition found for `{self.backend}.{self.regression_profile}` profile"
)
for key, value in profile_def.items():
try:
option = ProfileOption.from_str(key)
except NotImplementedError:
print(
f"ignoring unknown option name `{key}` in definition `{self.backend}.{self.regression_profile}`"
)
continue
match option:
case ProfileOption.BenchmarkTarget:
for target_key, ops in value.items():
for target_option in TargetOption:
if target_option.value == target_key:
trgt = target_option
if trgt not in self.targets:
self.targets[trgt] = ops
break
else:
raise KeyError(f"unknown benchmark target `{target_key}`")
case ProfileOption.Slab:
for slab_key, val in value.items():
if slab_key == "backend":
self.slab_backend = val
elif slab_key == "profile":
self.slab_profile = val
case ProfileOption.EnvironmentVariable:
for env_key, val in value.items():
self.env_vars[EnvOption.from_str(env_key)] = val
case _:
continue
def _build_tfhe_rs_targets(self, tfhe_rs_targets: list[dict]):
targets = {}
for key in TargetOption:
required_features = []
for item in tfhe_rs_targets:
if item["name"] == key.value:
required_features = item["required-features"]
break
targets[key] = {"target": key.value, "required_features": required_features}
return targets
def _build_features(self, target):
features = self.tfhe_rs_targets[target]["required_features"]
match self.backend:
case TfheBackend.Cpu:
features.append("nightly-avx512")
case TfheBackend.Gpu:
features.extend(["gpu", "nightly-avx512"])
case TfheBackend.Hpu:
features.extend(["hpu", "hpu-v80"])
return features
def generate_cargo_commands(self):
"""
Generate Cargo commands to run benchmarks.
:return: :class:`list` of :class:`str` of Cargo commands
"""
commands = []
for key, ops in self.targets.items():
features = self._build_features(key)
ops_filter = [f"::{op}::" for op in ops]
commands.append(
f"--bench {self.tfhe_rs_targets[key]["target"]} --features={','.join(features)} -- '{"\\|".join(ops_filter)}'"
)
return commands
def parse_issue_comment(comment):
"""
Parse GitHub issue comment string. To be parsable, the string must be formatted as:
`/bench <benchmark_args>`.
Note that multiline command and group of commands are not supported.
:param comment: :class:`str`
:return: :class:`list` of (:class:`ProfileOption`, :class:`str`)
"""
identifier, profile_arguments = comment.split(" ", maxsplit=1)
if identifier != COMMENT_IDENTIFIER:
raise ValueError(
f"unknown issue comment identifier (expected: `{COMMENT_IDENTIFIER}`, got `{identifier}`)"
)
arguments_pairs = []
for raw_pair in profile_arguments.split("--")[1:]:
name, value = raw_pair.split(" ", maxsplit=1)
try:
profile_option = ProfileOption.from_str(name)
except NotImplementedError:
raise ValueError(f"unknown profile option `{name}`")
else:
arguments_pairs.append((profile_option, value.strip()))
return arguments_pairs
def build_definition(profile_args_pairs, profile_defintions):
"""
Build regression profile definition form user inputs and definitions file.
:param profile_args_pairs: pairs of profile options and their value parsed from a string
:param profile_defintions: parsed profile definitions file
:return: :class:`ProfileDefinition`
"""
bench_targets = parse_toml_file(BENCH_TARGETS_PATH)["bench"]
definition = ProfileDefinition(bench_targets)
for profile_option, value in profile_args_pairs:
definition.set_field_from_option(profile_option, value)
definition.set_defaults_from_definitions_file(profile_defintions)
return definition
def write_commands_to_file(commands):
"""
Write commands to a file.
This file is meant to be read a string and passed to `toJSON()` GitHub actions function.
:param commands: :class:`list` of commands to write
"""
with GENERATED_COMMANDS_PATH.open("w") as f:
f.write("[")
for command in commands[:-1]:
f.write(f'"{command}", ')
f.write(f'"{commands[-1]}"]')
def write_env_to_file(env_vars: dict[EnvOption, str]):
"""
Write environment variables to a file.
This file is meant to be executed in a GitHub actions function. The variable contained in it, would be sent to
a GITHUB_ENV file thus the following workflow steps would be able to use these variables.
:param env_vars: dict of environment variables to write
"""
with CUSTOM_ENV_PATH.open("w") as f:
if not env_vars:
f.write("echo 'no env vars to set';\n")
return
for key, v in env_vars.items():
f.write(f'echo "{key.value}={v}";')
def write_backend_config_to_file(backend, profile):
"""
Write backend and profile configuration to different files to ease parsing.
:param backend:
:param profile:
:return:
"""
for filepart, content in [("backend", backend), ("profile", profile)]:
pathlib.Path(f"ci/perf_regression_slab_{filepart}_config.txt").write_text(
f"{content}\n"
)
# TODO Perform regression computing by providing a file containing results from database that would be parsed
if __name__ == "__main__":
args = parser.parse_args()
if args.command == "parse_profile":
comment = args.issue_comment
if not comment:
print(
f"cannot run `{args.command}` command: please specify the issue comment with `--issue-comment` argument"
)
sys.exit(1)
try:
profile_args_pairs = parse_issue_comment(comment)
profile_definitions = parse_toml_file(PROFILE_DEFINITION_PATH)
definition = build_definition(profile_args_pairs, profile_definitions)
commands = definition.generate_cargo_commands()
except Exception as err:
print(f"failed to generate commands (error:{err})")
sys.exit(2)
try:
write_commands_to_file(commands)
write_env_to_file(definition.env_vars)
write_backend_config_to_file(
definition.slab_backend, definition.slab_profile
)
except Exception as err:
print(f"failed to write commands/env to file (error:{err})")
sys.exit(3)
elif args.command == "check_regression":
pass