load torch files without torch

This commit is contained in:
George Hotz
2020-11-21 13:43:53 -08:00
parent 26899869a2
commit 03994e0011

View File

@@ -4,6 +4,71 @@ from tinygrad.tensor import Tensor
from tinygrad.utils import fetch
from tinygrad.nn import BatchNorm2D
USE_TORCH = False
def fake_torch_load(b0):
import io
import pickle
import struct
# convert it to a file
fb0 = io.BytesIO(b0)
# skip three junk pickles
pickle.load(fb0)
pickle.load(fb0)
pickle.load(fb0)
key_prelookup = {}
class HackTensor:
def __new__(cls, *args):
#print(args)
ident, storage_type, obj_key, location, obj_size, view_metadata = args[0]
assert ident == 'storage'
ret = np.zeros(obj_size, dtype=storage_type)
key_prelookup[obj_key] = (storage_type, obj_size, ret, args[2], args[3])
return ret
class MyPickle(pickle.Unpickler):
def find_class(self, module, name):
#print(module, name)
if name == 'FloatStorage':
return np.float32
if name == 'LongStorage':
return np.int64
if module == "torch._utils" or module == "torch":
return HackTensor
else:
return pickle.Unpickler.find_class(self, module, name)
def persistent_load(self, pid):
return pid
ret = MyPickle(fb0).load()
# create key_lookup
key_lookup = pickle.load(fb0)
key_real = [None] * len(key_lookup)
for k,v in key_prelookup.items():
key_real[key_lookup.index(k)] = v
# read in the actual data
for storage_type, obj_size, np_array, np_shape, np_strides in key_real:
ll = struct.unpack("Q", fb0.read(8))[0]
assert ll == obj_size
bytes_size = {np.float32: 4, np.int64: 8}[storage_type]
mydat = fb0.read(ll * bytes_size)
np_array[:] = np.frombuffer(mydat, storage_type)
np_array.shape = np_shape
# numpy stores its strides in bytes
real_strides = tuple([x*bytes_size for x in np_strides])
np_array.strides = real_strides
return ret
class MBConvBlock:
def __init__(self, kernel_size, strides, expand_ratio, input_filters, output_filters, se_ratio):
oup = expand_ratio * input_filters
@@ -123,8 +188,6 @@ class EfficientNet:
def load_weights_from_torch(self, gpu):
# load b0
import io
import torch
# https://github.com/lukemelas/EfficientNet-PyTorch/blob/master/efficientnet_pytorch/utils.py#L551
if self.number == 0:
b0 = fetch("https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth")
@@ -136,7 +199,13 @@ class EfficientNet:
b0 = fetch("https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth")
else:
raise Exception("no pretrained weights")
b0 = torch.load(io.BytesIO(b0))
if USE_TORCH:
import io
import torch
b0 = torch.load(io.BytesIO(b0))
else:
b0 = fake_torch_load(b0)
for k,v in b0.items():
if '_blocks.' in k:
@@ -150,7 +219,7 @@ class EfficientNet:
mv = eval(mk.replace(".weight", ""))
except AttributeError:
mv = eval(mk.replace(".bias", "_bias"))
vnp = v.numpy().astype(np.float32)
vnp = v.numpy().astype(np.float32) if USE_TORCH else v
mv.data[:] = vnp if k != '_fc.weight' else vnp.T
if gpu:
mv.cuda_()