From 075cf4bc02c16675f318c7575a5fe10345f528b5 Mon Sep 17 00:00:00 2001 From: Liam <3579535@myuwc.ac.za> Date: Sat, 19 Dec 2020 18:04:12 +0100 Subject: [PATCH] Update examples to new API (#205) --- examples/efficientnet.py | 4 ++-- examples/mnist_gan.py | 2 +- examples/serious_mnist.py | 4 ++-- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/examples/efficientnet.py b/examples/efficientnet.py index 182d406aee..7e8afbb5b3 100644 --- a/examples/efficientnet.py +++ b/examples/efficientnet.py @@ -38,7 +38,7 @@ def infer(model, img): # run the net if GPU: - out = model.forward(Tensor(img).cuda()).cpu() + out = model.forward(Tensor(img).gpu()).cpu() else: out = model.forward(Tensor(img)) @@ -55,7 +55,7 @@ if __name__ == "__main__": model = EfficientNet(int(os.getenv("NUM", "0"))) model.load_weights_from_torch() if GPU: - [x.cuda_() for x in get_parameters(model)] + [x.gpu_() for x in get_parameters(model)] # category labels import ast diff --git a/examples/mnist_gan.py b/examples/mnist_gan.py index e0665af8a9..32270ed58f 100644 --- a/examples/mnist_gan.py +++ b/examples/mnist_gan.py @@ -65,7 +65,7 @@ if __name__ == "__main__": ds_noise = Tensor(np.random.randn(64,128).astype(np.float32), gpu=GPU, requires_grad=False) n_steps = int(train_data_size/batch_size) if GPU: - [x.cuda_() for x in generator_params+discriminator_params] + [x.gpu_() for x in generator_params+discriminator_params] # optimizers optim_g = optim.Adam(generator_params,lr=0.0002, b1=0.5) # 0.0002 for equilibrium! optim_d = optim.Adam(discriminator_params,lr=0.0002, b1=0.5) diff --git a/examples/serious_mnist.py b/examples/serious_mnist.py index 18138ee596..5bc8a42d7f 100644 --- a/examples/serious_mnist.py +++ b/examples/serious_mnist.py @@ -85,7 +85,7 @@ class BigConvNet: try: par.cpu().data[:] = np.load(f) if GPU: - par.cuda() + par.gpu() except: print('Could not load parameter') @@ -126,7 +126,7 @@ if __name__ == "__main__": if GPU: params = get_parameters(model) - [x.cuda_() for x in params] + [x.gpu_() for x in params] for lr, epochs in zip(lrs, epochss): optimizer = optim.Adam(model.parameters(), lr=lr)