uops can have multiple metadata (#10479)

* uops can have multiple metadata

* fixups
This commit is contained in:
George Hotz
2025-05-22 21:35:02 -07:00
committed by GitHub
parent 283586bb96
commit 1e4d63e06e
5 changed files with 26 additions and 26 deletions

View File

@@ -775,9 +775,10 @@ class TestTensorMetadata(unittest.TestCase):
def setUp(self) -> None: _METADATA.set(None)
# NOOPs are not included in kernel metadata
@unittest.skip("why would this be true?")
def test_exclude_noop_metadata(self):
a = Tensor.rand(4, 4)*1
self.assertEqual(a.lazydata.metadata.name, "__mul__")
self.assertEqual(a.lazydata.metadata[0].name, "__mul__")
k = a.schedule()[-1]
self.assertEqual([m.name for m in k.metadata], ["rand"])
@@ -794,7 +795,7 @@ class TestTensorMetadata(unittest.TestCase):
x = Tensor.rand(3, requires_grad=True)
W = Tensor.rand(3, 3, requires_grad=True)
out = x.matmul(W)
self.assertEqual(out.lazydata.metadata.name, "matmul")
self.assertEqual(out.lazydata.metadata[0].name, "matmul")
si = out.schedule()[-1]
self.assertEqual(len(si.metadata), 1)
self.assertEqual(si.metadata[0].name, "matmul")
@@ -802,7 +803,7 @@ class TestTensorMetadata(unittest.TestCase):
def test_relu(self):
x = Tensor.rand(3, requires_grad=True)
out = x.relu()
self.assertEqual(out.lazydata.metadata.name, "relu")
self.assertEqual(out.lazydata.metadata[0].name, "relu")
si = out.schedule()[-1]
self.assertEqual(len(si.metadata), 1)
self.assertEqual(si.metadata[0].name, "relu")
@@ -811,9 +812,9 @@ class TestTensorMetadata(unittest.TestCase):
x = Tensor.rand(3, requires_grad=True)
y = Tensor.rand(3, requires_grad=True)
out = x.relu() * y.sigmoid()
self.assertEqual(out.lazydata.metadata.name, "__mul__")
self.assertEqual(out.lazydata.src[0].metadata.name, "relu")
self.assertEqual(out.lazydata.src[1].metadata.name, "sigmoid")
self.assertEqual(out.lazydata.metadata[0].name, "__mul__")
self.assertEqual(out.lazydata.src[0].metadata[0].name, "relu")
self.assertEqual(out.lazydata.src[1].metadata[0].name, "sigmoid")
si = out.schedule()[-1]
self.assertEqual(len(si.metadata), 3)
self.assertEqual(set(m.name for m in si.metadata), {"relu", "sigmoid", "__mul__"})
@@ -822,17 +823,17 @@ class TestTensorMetadata(unittest.TestCase):
x = Tensor.rand(3, requires_grad=True).realize()
y = Tensor.rand(3, requires_grad=True).realize()
out = (x.relu() * y.sigmoid()).sum()
self.assertEqual(out.lazydata.metadata.name, "sum")
self.assertEqual(out.lazydata.metadata[0].name, "sum")
out.backward()
self.assertEqual(x.grad.lazydata.metadata.name, "relu")
self.assertTrue(x.grad.lazydata.metadata.backward)
self.assertEqual(y.grad.lazydata.metadata.name, "sigmoid")
self.assertTrue(y.grad.lazydata.metadata.backward)
self.assertEqual(x.grad.lazydata.metadata[0].name, "relu")
self.assertTrue(x.grad.lazydata.metadata[0].backward)
self.assertEqual(y.grad.lazydata.metadata[0].name, "sigmoid")
self.assertTrue(y.grad.lazydata.metadata[0].backward)
si = Tensor.schedule(out, x.grad, y.grad)[-1]
self.assertEqual(len(si.metadata), 3, f"failed with {si.metadata}")
self.assertEqual(set(m.name for m in si.metadata), {"sigmoid", "sigmoid", "relu"})
self.assertEqual(len(si.metadata), 4, f"failed with {si.metadata}")
self.assertSetEqual(set(m.name for m in si.metadata), {"sigmoid", "__mul__", "relu"})
bw = [m for m in si.metadata if m.backward]
self.assertEqual(len(bw), 1)
self.assertEqual(len(bw), 2)
self.assertEqual(bw[0].name, "sigmoid")
class TestIdxUpcast(unittest.TestCase):

View File

@@ -243,20 +243,20 @@ class Kernel:
def create_kernel(x:UOp, b:UOp|None=None):
if b is None: b = UOp.new_buffer(x.device, x.size, x.dtype)
kernel = UOp(Ops.KERNEL, src=(b,)+x.src, arg=Kernel(x.sink(), (m,) if (m:=x.metadata) else ()))
kernel = UOp(Ops.KERNEL, src=(b,)+x.src, arg=Kernel(x.sink(), m if (m:=x.metadata) else ()))
buffer = b.base if b.size == b.base.size else UOp(Ops.BUFFER_VIEW, b.dtype, (b.base,), (b.size, b.arg.views[0].offset))
return buffer.assign(kernel).reshape(x.shape)
DONT_PLACE_IN_KERNEL = {Ops.KERNEL, Ops.ASSIGN, Ops.BUFFER}
def append_to_kernel(x:UOp):
new_srcs: list[UOp] = []
metadata = dict.fromkeys(x.arg.metadata)
metadata = x.arg.metadata
for s in x.src:
if s.op in DONT_PLACE_IN_KERNEL or s.op is Ops.GBARRIER: new_srcs.append(s)
else:
new_srcs.extend(s.src)
if s.base.op not in {Ops.CONST, Ops.DEVICE} and (m:=s.metadata): metadata[m] = None
if (new_src:=tuple(dedup(new_srcs))) != x.src: return x.replace(src=new_src, arg=Kernel(x.arg.ast, tuple(metadata)))
if s.base.op not in {Ops.CONST, Ops.DEVICE} and (m:=s.metadata): metadata += m
if (new_src:=tuple(dedup(new_srcs))) != x.src: return x.replace(src=new_src, arg=Kernel(x.arg.ast, tuple(dedup(metadata))))
create_kernels = PatternMatcher([
# always give assign/contiguous a kernel

View File

@@ -63,5 +63,5 @@ def compute_gradient(root:UOp, root_grad:UOp, targets:set[UOp]) -> dict[UOp, UOp
if v is None: continue
if k in grads: grads[k] = grads[k] + v
else: grads[k] = v
if (forward_metadata:=all_metadata.get(t0)) is not None: all_metadata[v] = dataclasses.replace(forward_metadata, backward=True)
if len(forward_metadata:=all_metadata.get(t0, ())): all_metadata[v] = tuple(dataclasses.replace(x, backward=True) for x in forward_metadata)
return grads

View File

@@ -177,7 +177,7 @@ class Tensor(MathTrait):
def _apply_uop(self, fxn:Callable, *x:Tensor, **kwargs) -> Tensor:
new_uop: UOp = fxn(*[t.lazydata for t in (self,)+x], **kwargs)
if (metadata:=_METADATA.get()) is not None: all_metadata[new_uop] = metadata
if (metadata:=_METADATA.get()) is not None: all_metadata[new_uop] = (metadata,)
needs_input_grad = [t.requires_grad for t in (self,)+x]
return Tensor(new_uop, device=new_uop.device, requires_grad=True if any(needs_input_grad) else None if None in needs_input_grad else False)

View File

@@ -221,7 +221,7 @@ def pretty_print(x:Any, rep:Callable, srcfn=lambda x: x.src, cache=None, d=0)->s
class UOpMetaClass(type):
ucache:dict[tuple, weakref.ReferenceType[UOp]] = {}
def __call__(cls, op:Ops, dtype:DType=dtypes.void, src:tuple[UOp,...]=tuple(), arg:Any=None, tag:Any=None,
metadata:Metadata|None=None, _buffer:Buffer|None=None):
metadata:tuple[Metadata,...]|None=None, _buffer:Buffer|None=None):
if (wret:=UOpMetaClass.ucache.get(key:=(op, dtype, src, arg, tag), None)) is not None and (ret:=wret()) is not None: return ret
UOpMetaClass.ucache[key] = ref = weakref.ref(created:=super().__call__(*key))
for s in src: s.children.add(ref)
@@ -234,7 +234,7 @@ class UOpMetaClass(type):
# some uops map to other stuff
buffers:weakref.WeakKeyDictionary[UOp, Buffer] = weakref.WeakKeyDictionary() # this maps BUFFER uops to their device Buffers
all_metadata:weakref.WeakKeyDictionary[UOp, Metadata] = weakref.WeakKeyDictionary() # TODO: should this be here?
all_metadata:weakref.WeakKeyDictionary[UOp, tuple[Metadata, ...]] = weakref.WeakKeyDictionary() # TODO: should this be here?
# NOTE: this should be frozen, but frozen is slower
@dataclass(eq=False, slots=True)
@@ -251,8 +251,7 @@ class UOp(MathTrait, metaclass=UOpMetaClass):
for s in self.src: s.children.discard(ref)
del UOpMetaClass.ucache[k]
def __reduce__(self):
args = [self.op, self.dtype, self.src, self.arg, self.tag]
args.append(self.metadata)
args = [self.op, self.dtype, self.src, self.arg, self.tag, self.metadata]
if self.op is Ops.BUFFER and self.realized is not None and PICKLE_BUFFERS: args.append(self.realized)
return UOp, tuple(args)
def replace(self, **kwargs) -> UOp:
@@ -494,7 +493,7 @@ class UOp(MathTrait, metaclass=UOpMetaClass):
return UOp(Ops.COPY, self.dtype, (self, UOp(Ops.DEVICE, arg=device) if not isinstance(device, UOp) else device), arg)
def clone(self) -> UOp: return self.copy_to_device(self.device)
@property
def metadata(self) -> Metadata|None: return all_metadata.get(self, None)
def metadata(self) -> tuple[Metadata, ...]|None: return all_metadata.get(self, None)
# *** uop movement ops ***
@@ -990,7 +989,7 @@ def graph_rewrite(sink:UOp, pm:PatternMatcher, ctx=None, bottom_up=False, name=N
def graph_rewrite_map(sink:UOp, pm:PatternMatcher, ctx=None, bottom_up=False, name=None, input_map:dict[UOp, UOp]|None=None) -> dict[UOp, UOp]:
rewrite_ctx = RewriteContext(pm, ctx)
new_map = {k:(rewrite_ctx.bottom_up_rewrite(k) if bottom_up else rewrite_ctx.top_down_rewrite(k)) for k in sink.toposort()}
all_metadata.update((v, k.metadata) for k,v in reversed(new_map.items()) if k.metadata is not None)
all_metadata.update((v, tuple(dedup(all_metadata.get(v, ())+k.metadata))) for k,v in new_map.items() if k.metadata is not None)
if input_map is not None:
for k,v in input_map.items(): new_map[k] = new_map.get(v,v)
return new_map