mirror of
https://github.com/tinygrad/tinygrad.git
synced 2026-01-08 22:48:25 -05:00
move view pushing to codegen, try 2 (#11534)
* move view pushing to codegen, try 2 * fix up some linearizer tests * fix test search * fix test schedule * delete that test * fix test arange * fix a few tests * update tests * push views * ebs cleanup * fix local/reg * test and lint * fix more tests * test cleanups * skipped that one
This commit is contained in:
@@ -1,134 +0,0 @@
|
||||
from extra.models.resnet import ResNet50
|
||||
from extra.mcts_search import mcts_search
|
||||
from examples.mlperf.helpers import get_mlperf_bert_model
|
||||
from tinygrad import Tensor, Device, dtypes, nn
|
||||
from tinygrad.opt.kernel import Kernel
|
||||
from tinygrad.opt.heuristic import hand_coded_optimizations
|
||||
from tinygrad.uop.ops import Ops, sym_infer
|
||||
from tinygrad.device import Compiled
|
||||
from tinygrad.opt.search import beam_search, bufs_from_lin
|
||||
from tinygrad.helpers import DEBUG, ansilen, getenv, colored, TRACEMETA
|
||||
from extra.optimization.helpers import time_linearizer
|
||||
from tinygrad.engine.realize import get_program
|
||||
|
||||
def get_sched_resnet():
|
||||
mdl = ResNet50()
|
||||
optim = (nn.optim.LARS if getenv("LARS") else nn.optim.SGD)(nn.state.get_parameters(mdl))
|
||||
BS = getenv("BS", 64)
|
||||
|
||||
# run model twice to get only what changes, these are the kernels of the model
|
||||
for _ in range(2):
|
||||
out = mdl(Tensor.empty(BS, 3, 224, 224))
|
||||
targets = [out]
|
||||
if getenv("BACKWARD"):
|
||||
optim.zero_grad()
|
||||
out.sparse_categorical_crossentropy(Tensor.empty(BS, dtype=dtypes.int)).backward()
|
||||
targets += [x for x in optim.schedule_step()]
|
||||
sched = Tensor.schedule(*targets)
|
||||
print(f"schedule length {len(sched)}")
|
||||
return sched
|
||||
|
||||
def get_sched_bert():
|
||||
mdl = get_mlperf_bert_model()
|
||||
optim = nn.optim.LAMB(nn.state.get_parameters(mdl))
|
||||
|
||||
# fake data
|
||||
BS = getenv("BS", 9)
|
||||
input_ids = Tensor.empty((BS, 512), dtype=dtypes.float32)
|
||||
segment_ids = Tensor.empty((BS, 512), dtype=dtypes.float32)
|
||||
attention_mask = Tensor.empty((BS, 512), dtype=dtypes.default_float)
|
||||
masked_positions = Tensor.empty((BS, 76), dtype=dtypes.float32)
|
||||
masked_lm_ids = Tensor.empty((BS, 76), dtype=dtypes.float32)
|
||||
masked_lm_weights = Tensor.empty((BS, 76), dtype=dtypes.float32)
|
||||
next_sentence_labels = Tensor.empty((BS, 1), dtype=dtypes.float32)
|
||||
|
||||
# run model twice to get only what changes, these are the kernels of the model
|
||||
for _ in range(2):
|
||||
lm_logits, seq_relationship_logits = mdl(input_ids, attention_mask, masked_positions, segment_ids)
|
||||
targets = [lm_logits, seq_relationship_logits]
|
||||
if getenv("BACKWARD"):
|
||||
optim.zero_grad()
|
||||
loss = mdl.loss(lm_logits, seq_relationship_logits, masked_lm_ids, masked_lm_weights, next_sentence_labels)
|
||||
# ignore grad norm and loss scaler for now
|
||||
loss.backward()
|
||||
targets += [x for x in optim.schedule_step()]
|
||||
sched = Tensor.schedule(*targets)
|
||||
print(f"schedule length {len(sched)}")
|
||||
return sched
|
||||
|
||||
if __name__ == "__main__":
|
||||
if getenv("HALF", 1):
|
||||
dtypes.default_float = dtypes.half
|
||||
|
||||
# the device we are optimizing for
|
||||
device: Compiled = Device[Device.DEFAULT]
|
||||
if getenv("BACKWARD"): Tensor.training = True
|
||||
print(f"optimizing for {Device.DEFAULT}")
|
||||
|
||||
sched = globals()[f"get_sched_{getenv('MODEL', 'resnet')}"]()
|
||||
sched = [x for x in sched if x.ast.op is Ops.SINK]
|
||||
|
||||
# focus on one kernel
|
||||
if getenv("KERNEL", -1) >= 0: sched = sched[getenv("KERNEL", -1):getenv("KERNEL", -1)+1]
|
||||
|
||||
# work with the schedule
|
||||
total_tm = 0
|
||||
running_gflops = 0
|
||||
usage = {}
|
||||
for i,si in enumerate(sched):
|
||||
if DEBUG >= 3: print(si.ast)
|
||||
|
||||
rawbufs = bufs_from_lin(Kernel(si.ast))
|
||||
|
||||
# "linearize" the op into uops in different ways
|
||||
lins: list[tuple[Kernel, str]] = []
|
||||
|
||||
# always try hand coded opt
|
||||
lin = Kernel(si.ast, opts=device.renderer)
|
||||
lin.apply_opts(hand_coded_optimizations(lin))
|
||||
lins.append((lin, "HC"))
|
||||
|
||||
# maybe try tensor cores
|
||||
lin = Kernel(si.ast, opts=device.renderer)
|
||||
if lin.apply_tensor_cores():
|
||||
lins.append((lin, "TC"))
|
||||
|
||||
# try a beam search
|
||||
if beam:=getenv("BEAM"):
|
||||
lin = Kernel(si.ast, opts=device.renderer)
|
||||
lin = beam_search(lin, rawbufs, beam, bool(getenv("BEAM_ESTIMATE", 1)))
|
||||
lins.append((lin, "BEAM"))
|
||||
|
||||
# try MCTS
|
||||
if mcts:=getenv("MCTS"):
|
||||
lin = Kernel(si.ast, opts=device.renderer)
|
||||
lin = mcts_search(lin, rawbufs, mcts)
|
||||
lins.append((lin, "MCTS"))
|
||||
|
||||
# benchmark the programs
|
||||
choices = []
|
||||
for lin, nm in lins:
|
||||
tm = time_linearizer(lin, rawbufs, allow_test_size=False, cnt=10, disable_cache=True)
|
||||
ops = (prg:=get_program(lin.get_optimized_ast(), lin.opts)).estimates.ops
|
||||
gflops = sym_infer(ops, {k:k.min for k in lin.ast.variables()})*1e-9/tm
|
||||
choices.append((tm, gflops, lin, prg, nm))
|
||||
|
||||
sorted_choices = sorted(choices, key=lambda x: x[0])
|
||||
if DEBUG >= 1: # print all kernels
|
||||
for tm, gflops, lin, prg, nm in choices:
|
||||
print(f" kernel {i:2d} {lin.name+' '*(37-ansilen(lin.name))} {str(prg.global_size):18s} {str(prg.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS -- {colored(nm, 'green') if lin is sorted_choices[0][2] else nm}")
|
||||
|
||||
tm, gflops, lin, prg, nm = sorted_choices[0]
|
||||
if getenv("SRC"):
|
||||
print(si.ast)
|
||||
print(lin.applied_opts)
|
||||
print(get_program(lin.get_optimized_ast(), lin.opts).src)
|
||||
total_tm += tm
|
||||
running_gflops += gflops * tm
|
||||
if (key := str([str(m) for m in si.metadata])) not in usage: usage[key] = (0, 0)
|
||||
usage[key] = (usage[key][0] + tm, usage[key][1] + 1)
|
||||
print(f"*** {total_tm*1000:7.2f} ms : kernel {i:2d} {lin.name+' '*(37-ansilen(lin.name))} {str(prg.global_size):18s} {str(prg.local_size):12s} takes {tm*1000:7.2f} ms, {gflops:6.0f} GFLOPS {[repr(m) if TRACEMETA >= 2 else str(m) for m in si.metadata]}")
|
||||
print(f"******* total {total_tm*1000:.2f} ms, {running_gflops/total_tm:6.0f} GFLOPS")
|
||||
print("usage:")
|
||||
for k in sorted(usage, key=lambda x: -usage[x][0])[:10]:
|
||||
print(f"{usage[k][0]*1000:.2f} ms: {k} ({usage[k][1]} times)")
|
||||
Reference in New Issue
Block a user